Tumour exosome integrins determine organotropic metastasis

Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

Gary K. Schwartz | Michael A. Hollingsworth | Andy J. Minn | Mina J. Bissell | William R. Jarnagin | Benjamin A. Garcia | Tuo Zhang | Henrik Molina | Klaus Pantel | Alexander E. Davies | Joshua M. Weiss | Hector Peinado | Elin H. Kure | John H. Healey | Shinji Kohsaka | B. Garcia | S. Batra | Yibin Kang | M. Bissell | M. Hollingsworth | W. Jarnagin | K. Pantel | G. Schwartz | A. Minn | K. Uryu | J. Healey | T. King | H. Molina | J. Bromberg | D. Lyden | E. Kure | S. Kaur | Maneesh Jain | O. Fodstad | G. Rodrigues | Haiying Zhang | B. Costa-Silva | Ayako Hashimoto | M. Brady | M. T. Mark | Tuo Zhang | L. Wexler | A. Narendran | Cyrus M. Ghajar | P. Grandgenett | L. Bojmar | David Lyden | A. Di Giannatale | H. Peinado | T. Shen | Oystein Fodstad | K. Kramer | I. Matei | Swarnima Singh | Ayuko Hoshino | Caitlin Williams | Yonathan T. Ararso | K. Labori | Jonathan Hernandez | K. Mallya | S. Kohsaka | S. Ceder | Nadine H. Soplop | Lindsay A. Pharmer | A. E. Davies | Vanessa D. Dumont-Cole | P. Sandstrom | Maria de Sousa | V. Muller | Vinagolu K. Rajasekhar | Yibin Kang | Surinder K. Batra | Maneesh Jain | Sukhwinder Kaur | Haiying Zhang | Irina Matei | Bruno Costa-Silva | Ayuko Hoshino | Caitlin Williams | Jacqueline Bromberg | Goncalo Rodrigues | Tari King | Kunihiro Uryu | Mary S. Brady | Swarnima Singh | Yonathan Ararso | Tang-Long Shen | Knut Jørgen Labori | Jonathan Hernandez | Paul M. Grandgenett | Kavita Mallya | Ayako Hashimoto | Milica Tesic Mark | Angela Di Giannatale | Sophia Ceder | Nadine Soplop | Lindsay Pharmer | Linda Bojmar | Kimberly Kramer | Leonard H. Wexler | Aru Narendran | Per Sandstrom | Maria de Sousa | Volkmar Muller | Tang-Long Shen | Linda Bojmar | Jonathan M. Hernandez | Irina Matei | Nadine Soplop | Yonathan Ararso | Vinagolu K Rajasekhar | Irina R Matei

[1]  D. Lyden,et al.  The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. , 2011, Seminars in cancer biology.

[2]  A. Bresnick,et al.  Integrin α6β4 Controls the Expression of Genes Associated with Cell Motility, Invasion, and Metastasis, Including S100A4/Metastasin* , 2009, Journal of Biological Chemistry.

[3]  I. Fidler,et al.  Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. , 1980, Cancer research.

[4]  Edi Brogi,et al.  Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs , 2011, Nature Medicine.

[5]  C. Tacchetti,et al.  Targeted Deletion of the Integrin β4 Signaling Domain Suppresses Laminin-5-Dependent Nuclear Entry of Mitogen-Activated Protein Kinases and NF-κB, Causing Defects in Epidermal Growth and Migration , 2005, Molecular and Cellular Biology.

[6]  Xin Lu,et al.  Organotropism of Breast Cancer Metastasis , 2007, Journal of Mammary Gland Biology and Neoplasia.

[7]  M. Grigorian,et al.  Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. , 2005, Cancer research.

[8]  T. Guise,et al.  Cancer to bone: a fatal attraction , 2011, Nature Reviews Cancer.

[9]  C. Théry,et al.  Membrane vesicles as conveyors of immune responses , 2009, Nature Reviews Immunology.

[10]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[11]  Hamid Cheshmi Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers , 2011 .

[12]  C. Larabell,et al.  Reversion of the Malignant Phenotype of Human Breast Cells in Three-Dimensional Culture and In Vivo by Integrin Blocking Antibodies , 1997, The Journal of cell biology.

[13]  Jakob Bunkenborg,et al.  The minotaur proteome: Avoiding cross‐species identifications deriving from bovine serum in cell culture models , 2010, Proteomics.

[14]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[15]  E. Ruoslahti,et al.  Arg-Gly-Asp: A versatile cell recognition signal , 1986, Cell.

[16]  J. Lötvall,et al.  Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells , 2007, Nature Cell Biology.

[17]  Olivier Elemento,et al.  Double-stranded DNA in exosomes: a novel biomarker in cancer detection , 2014, Cell Research.

[18]  Michael A. Hollingsworth,et al.  Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver , 2015, Nature Cell Biology.

[19]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[20]  Graça Raposo,et al.  Extracellular vesicles: Exosomes, microvesicles, and friends , 2013, The Journal of cell biology.

[21]  W. Gerald,et al.  Identifying site-specific metastasis genes and functions. , 2005, Cold Spring Harbor symposia on quantitative biology.

[22]  Gema Moreno-Bueno,et al.  Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET , 2012, Nature Medicine.

[23]  Weiying Zhou,et al.  Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. , 2014, Cancer cell.

[24]  Mina J Bissell,et al.  Order and Disorder: The Role of Extracellular Matrix in Epithelial Cancer , 2002, Cancer investigation.

[25]  M. Merola,et al.  p38 MAPK is a critical regulator of the constitutive and the β4 integrin‐regulated expression of IL‐6 in human normal thymic epithelial cells , 2003, European journal of immunology.

[26]  Sophie Lelièvre,et al.  beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. , 2002, Cancer cell.

[27]  K. Lam,et al.  The minimum element of a synthetic peptide required to block prostate tumor cell migration , 2006, Cancer biology & therapy.

[28]  R. Baron,et al.  Tumor αvβ3 Integrin Is a Therapeutic Target for Breast Cancer Bone Metastases , 2007 .

[29]  Yusuke Yoshioka,et al.  Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier , 2015, Nature Communications.

[30]  Wolfhard Semmler,et al.  Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE‐MRI in a longitudinal in vivo study , 2011, International journal of cancer.

[31]  B. Nielsen,et al.  Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. , 2010, Cancer research.

[32]  W. Gerald,et al.  Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. , 2005, The Journal of clinical investigation.

[33]  J. Sleeman,et al.  Building the niche: the role of the S100 proteins in metastatic growth. , 2012, Seminars in cancer biology.

[34]  S. Rafii,et al.  VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche , 2005, Nature.

[35]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[36]  R. Linding,et al.  The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase , 2015, Nature.

[37]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[38]  S Paget,et al.  THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. , 1889 .

[39]  William Stafford Noble,et al.  Semi-supervised learning for peptide identification from shotgun proteomics datasets , 2007, Nature Methods.

[40]  M. Gorenstein,et al.  Absolute Quantification of Proteins by LCMSE , 2006, Molecular & Cellular Proteomics.

[41]  S. Pomeroy,et al.  Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. , 2011, Nature communications.

[42]  M. Shibuya,et al.  MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. , 2002, Cancer cell.

[43]  R. Elble,et al.  Focal Adhesion Kinase Activated by β4 Integrin Ligation to mCLCA1 Mediates Early Metastatic Growth* , 2002, The Journal of Biological Chemistry.

[44]  Ming Li,et al.  The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. , 2013, Neoplasia.

[45]  Tae Hyong Kim,et al.  Integrin (α6β4) Signals Through Src to Increase Expression of S100A4, a Metastasis-Promoting Factor: Implications for Cancer Cell Invasion , 2009, Molecular Cancer Research.

[46]  H. Saya,et al.  Periostin Is a Key Niche Component for Wound Metastasis of Melanoma , 2015, PloS one.

[47]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[48]  Y. Gho,et al.  Proteomics, transcriptomics and lipidomics of exosomes and ectosomes , 2013, Proteomics.

[49]  D. Kraemer,et al.  Targeting αV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model , 2012, Journal of Neuro-Oncology.

[50]  W. Gerald,et al.  Genes that mediate breast cancer metastasis to the brain , 2009, Nature.