Modelling intermodal travel in Switzerland: A recursive logit approach

We use data from the Swiss national household travel survey to 1. analyze the socioeconomic determinants for intermodal travel in Switzerland and 2. estimate a first large-scale multimodal recursive logit route choice model for urban trip making. We show that intermodal travel is mostly associated with ownership of transit subscriptions, which allow free at the point-of-use public transportation. We also present a framework using open-source data to generate the multimodal network for the recursive logit model estimation. The fact that the model only needs a multimodal network to model the transport supply makes it independent of path sampling algorithms for the choice-set construction and it thus provides an alternative to classic mode and route choice models, since it can estimate mode and route choice parameters with directly observed routes, removing the sampling bias. By eliminating the need to sample alternative paths for estimation, it also simplifies the estimation process, making it a viable choice as an integral solution for joint route and mode choice modelling.

[1]  Eliahu Stern,et al.  Levels of Spatial Knowledge and Urban Travel Modeling , 2010 .

[2]  Carlo G. Prato,et al.  Route choice modeling: past, present and future research directions , 2009 .

[3]  Piet H. L. Bovy,et al.  On Modelling Route Choice Sets in Transportation Networks: A Synthesis , 2009 .

[4]  Kay W. Axhausen,et al.  Estimating the externalities of a sustainable mobility platform using GPS traces , 2018 .

[5]  Manuel Ojeda-Cabral,et al.  Understanding valuation of travel time changes: are preferences different under different stated choice design settings? , 2016, Transportation.

[6]  Merritt Polk,et al.  THE INFLUENCE OF GENDER ON DAILY CAR USE AND ON WILLINGNESS TO REDUCE CAR USE IN SWEDEN , 2004 .

[7]  Anja Peters,et al.  VIVER - Vision für nachhaltigen Verkehr in Deutschland , 2011 .

[8]  Antonio Lima,et al.  Understanding individual routing behaviour , 2016, Journal of The Royal Society Interface.

[9]  Philipp Rode,et al.  Towards new urban mobility: the case of London and Berlin , 2015 .

[10]  Julia Jarass,et al.  Intermodal, urban, mobil – Charakterisierung intermodaler Wege und Nutzer am Beispiel Berlin , 2017 .

[11]  Philipp Rode,et al.  Governing urban accessibility: moving beyond transport and mobility , 2018 .

[12]  Ulrich Weidmann,et al.  PASSENGER ARRIVAL RATES AT PUBLIC TRANSPORT STATIONS , 2007 .

[13]  Kay W. Axhausen,et al.  Modeling car-sharing membership as a mobility tool: A multivariate Probit approach with latent variables , 2017 .

[14]  Tien Mai,et al.  A decomposition method for estimating recursive logit based route choice models , 2016, EURO J. Transp. Logist..

[15]  E. Heinen,et al.  The same mode again? An exploration of mode choice variability in Great Britain using the National Travel Survey , 2015 .

[16]  L. D. Olvera,et al.  Intermodality in a context of poor transport integration: the case of Sub-Saharan African cities , 2014 .

[17]  Eric Molin,et al.  Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers , 2016 .

[18]  T. Arentze,et al.  Travelers’ Preferences in Multimodal Networks: Design and Results of a Comprehensive Series of Choice Experiments , 2013 .

[19]  Martin Dijst,et al.  Multimodal Trips in the Netherlands: Microlevel Individual Attributes and Residential Context , 2001 .

[20]  Anders Karlström,et al.  A link based network route choice model with unrestricted choice set , 2013 .

[21]  Evelyn Blumenberg,et al.  Multimodal travel and the poor: evidence from the 2009 National Household Travel Survey , 2014 .

[22]  M. Bierlaire,et al.  Sampling of Alternatives for Route Choice Modeling , 2009 .

[23]  Kelly Clifton,et al.  Capturing and Representing Multimodal Trips in Travel Surveys , 2012 .

[24]  Toshiyuki Yamamoto,et al.  Men Shape a Downward Trend in Car Use among Young Adults—Evidence from Six Industrialized Countries , 2012 .

[25]  Otto Anker Nielsen,et al.  Multimodal route choice models of public transport passengers in the Greater Copenhagen Area , 2017, EURO J. Transp. Logist..

[26]  Kay W. Axhausen,et al.  Definition Of Movement and Activity For Transport Modelling , 2007 .

[27]  Gebhard Wulfhorst,et al.  Impacts of a multimodal mobility service on travel behavior and preferences: user insights from Munich’s first Mobility Station , 2017 .

[28]  Martin Lanzendorf,et al.  Mobility biographies. A new perspective for understanding travel behaviour , 2003 .

[29]  M. S. Fiorenzo-Catalano Choice set generation in multi-modal transportation networks , 2007 .

[30]  Mason A. Porter,et al.  Lost in transportation: Information measures and cognitive limits in multilayer navigation , 2016, Science Advances.

[31]  Ahmed El-Geneidy,et al.  Travel mode choice and transit route choice behavior in Montreal: insights from McGill University members commute patterns , 2012, Public Transp..

[32]  Mark D. Abkowitz TRANSIT SERVICE RELIABILITY , 1978 .

[33]  Rob van Nes,et al.  Multimodal traveling and its impact on urban transit network design , 2004 .

[34]  Gyeong-Sang Yoo Transfer penalty estimation with transit trips from smartcard data in Seoul, Korea , 2015 .

[35]  Kay W. Axhausen,et al.  Multi-modal route choice modeling in a dynamic schedule-based transit network , 2018 .

[36]  Kenneth J. Dueker,et al.  TIME POINT-LEVEL ANALYSIS OF PASSENGER DEMAND AND TRANSIT SERVICE RELIABILITY FINAL TECHNICAL REPORT. , 2000 .

[37]  Tien Mai,et al.  A nested recursive logit model for route choice analysis , 2015 .

[38]  Tien Mai,et al.  Bike route choice modeling using GPS data without choice sets of paths , 2017 .

[39]  Zhan Guo,et al.  Assessment of the Transfer Penalty for Transit Trips Geographic Information System-Based Disaggregate Modeling Approach , 2004 .

[40]  David M Levinson,et al.  A Portfolio Theory of Route Choice , 2013 .

[41]  Francesco Ciari,et al.  The IVT 2015 baseline scenario , 2016 .

[42]  A. S. Olafsson,et al.  Cycling in multimodal transport behaviours: exploring modality styles in the Danish population , 2016 .

[43]  Claudia Nobis Multimodale Vielfalt: Quantitative Analyse multimodalen Verkehrshandelns , 2015 .

[44]  Stephane Hess,et al.  Valuing travel time savings: A case of short-term or long term choices? , 2017 .

[45]  H. Williams,et al.  Behavioural theories of dispersion and the mis-specification of travel demand models☆ , 1982 .

[46]  Nadine Rieser-Schüssler,et al.  Exploring choice set generation approaches for public transport connection choice , 2014 .