The Nonequivalence and Dimension Formula for attractors of Lorenz-Type Systems
暂无分享,去创建一个
[1] Y. Kuznetsov. Elements of applied bifurcation theory (2nd ed.) , 1998 .
[2] Yongjian Liu. Closed orbits in the General Lorenz Family , 2011, Int. J. Bifurc. Chaos.
[3] Guanrong Chen,et al. A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.
[4] Gennady A. Leonov,et al. Erratum to “The dimension formula for the Lorenz attractor” [Phys. Lett. A 375 (8) (2011) 1179] , 2012 .
[5] Divakar Viswanath,et al. Complex Singularities and the Lorenz Attractor , 2009, SIAM Rev..
[6] Guanrong Chen,et al. On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.
[7] Guanrong Chen,et al. On the Nonequivalence of Lorenz System and Chen System , 2009, Int. J. Bifurc. Chaos.
[8] Qigui Yang,et al. A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.
[9] Sergej Celikovský,et al. Bilinear systems and chaos , 1994, Kybernetika.
[10] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[11] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[12] Guanrong Chen,et al. On the generalized Lorenz canonical form , 2005 .
[13] M. Hirsch,et al. Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .
[14] O. Ladyzhenskaya,et al. A dynamical system generated by the Navier-Stokes equations , 1975 .
[15] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[16] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[17] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[18] Qigui Yang,et al. Dynamics of a new Lorenz-like chaotic system , 2010 .
[19] S. Čelikovský,et al. Control systems: from linear analysis to synthesis of chaos , 1996 .
[20] Gennady A. Leonov,et al. Lyapunov functions in the attractors dimension theory , 2012 .
[21] Shin Kiriki,et al. Parameter-shifted shadowing property for geometric Lorenz attractors , 2003 .
[22] Zhigang Zeng,et al. Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application , 2010, Science China Information Sciences.
[23] Gennady A. Leonov,et al. The dimension formula for the Lorenz attractor , 2011 .
[24] I. Chueshov. Introduction to the Theory of In?nite-Dimensional Dissipative Systems , 2002 .
[25] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .