The Nonequivalence and Dimension Formula for attractors of Lorenz-Type Systems

In this paper, Lu system with a set of chaotic parameters is proved to be smoothly nonequivalent to Chen and Lorenz systems with any parameter. The analytical formula for the upper bound of Lyapunov dimension of attractors in Lorenz-type systems are presented under some suitable parameter conditions. These properties studied in this paper may contribute to a better understanding of the Lorenz-type systems.

[1]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[2]  Yongjian Liu Closed orbits in the General Lorenz Family , 2011, Int. J. Bifurc. Chaos.

[3]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[4]  Gennady A. Leonov,et al.  Erratum to “The dimension formula for the Lorenz attractor” [Phys. Lett. A 375 (8) (2011) 1179] , 2012 .

[5]  Divakar Viswanath,et al.  Complex Singularities and the Lorenz Attractor , 2009, SIAM Rev..

[6]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[7]  Guanrong Chen,et al.  On the Nonequivalence of Lorenz System and Chen System , 2009, Int. J. Bifurc. Chaos.

[8]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[9]  Sergej Celikovský,et al.  Bilinear systems and chaos , 1994, Kybernetika.

[10]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Guanrong Chen,et al.  On the generalized Lorenz canonical form , 2005 .

[13]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[14]  O. Ladyzhenskaya,et al.  A dynamical system generated by the Navier-Stokes equations , 1975 .

[15]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[16]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[17]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[18]  Qigui Yang,et al.  Dynamics of a new Lorenz-like chaotic system , 2010 .

[19]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[20]  Gennady A. Leonov,et al.  Lyapunov functions in the attractors dimension theory , 2012 .

[21]  Shin Kiriki,et al.  Parameter-shifted shadowing property for geometric Lorenz attractors , 2003 .

[22]  Zhigang Zeng,et al.  Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application , 2010, Science China Information Sciences.

[23]  Gennady A. Leonov,et al.  The dimension formula for the Lorenz attractor , 2011 .

[24]  I. Chueshov Introduction to the Theory of In?nite-Dimensional Dissipative Systems , 2002 .

[25]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .