Fractional diffusion equations by the Kansa method

This study makes the first attempt to apply the Kansa method in the solution of the time fractional diffusion equations, in which the MultiQuadrics and thin plate spline serve as the radial basis function. In the discretization formulation, the finite difference scheme and the Kansa method are respectively used to discretize time fractional derivative and spatial derivative terms. The numerical solutions of one- and two-dimensional cases are presented and discussed, which agree well with the corresponding analytical solution.

[1]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[4]  W. Wyss The fractional diffusion equation , 1986 .

[5]  Thomas A. Witten,et al.  Insights from Soft Condensed Matter , 1999 .

[6]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[7]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[8]  E. J. Kansa,et al.  Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .

[9]  S. Momani An algorithm for solving the fractional convection–diffusion equation with nonlinear source term , 2007 .

[10]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[11]  Chen Jing-hua,et al.  An Implicit Approximation for the Caputo Fractional Reaction-Dispersion Equation , 2007 .

[12]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[13]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[14]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[15]  T. Szabo,et al.  A model for longitudinal and shear wave propagation in viscoelastic media , 2000, The Journal of the Acoustical Society of America.

[16]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[17]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[18]  Ching-Shyang Chen,et al.  A numerical method for heat transfer problems using collocation and radial basis functions , 1998 .

[19]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[20]  Igor M. Sokolov,et al.  Ballistic versus diffusive pair dispersion in the Richardson regime , 2000 .

[21]  Chang Fu-xuan,et al.  Anomalous diffusion and fractional advection-diffusion equation , 2005 .

[22]  Ken-ichi Yoshihara,et al.  Conditional empirical processes defined by Φ-mixing sequences , 1990 .

[23]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[24]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[25]  V E Lynch,et al.  Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.

[26]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[27]  Wen Chen A speculative study of fractional Laplacian modeling of turbulence , 2006 .

[28]  Juan J de Pablo,et al.  Monte Carlo simulation of a coarse-grained model of polyelectrolyte networks. , 2003, Physical review letters.

[29]  Xiong Zhang,et al.  Meshless methods based on collocation with radial basis functions , 2000 .

[30]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[31]  Kamal Djidjeli,et al.  Explicit and implicit meshless methods for linear advection–diffusion-type partial differential equations , 2000 .

[32]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .