ON THE COMPLEX SYMMETRY OF THE POINCARÉ-STEKLOV OPERATOR

Employing Lorentz reciprocity and the Stratton-Chu formalism it is shown that the Poincaré-Steklov or admittance operator can be interpreted as a complex symmetric operator mapping the tangential electric field (instead of the equivalent magnetic current) onto the equivalent electric current. We show that the pertinent block Calderón projectors can be reformulated as operators with a block Hamiltonian structure. This leads to an explicitly complex symmetric Schur complement expression for both the interior and exterior admittance operators.

[1]  L. J. Chu,et al.  Diffraction Theory of Electromagnetic Waves , 1939 .

[2]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[3]  E. Haynsworth,et al.  An identity for the Schur complement of a matrix , 1969 .

[4]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[5]  G. Deschamps Electromagnetics and differential forms , 1981, Proceedings of the IEEE.

[6]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[7]  Jan Drewes Achenbach,et al.  Acoustic and Electromagnetic Waves , 1986 .

[8]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[9]  Armel de La Bourdonnaye,et al.  Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism , 1995 .

[10]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[11]  Willis Lin,et al.  On Computing Stable Lagrangian Subspaces of Hamiltonian Matrices and Symplectic Pencils , 1997, SIAM J. Matrix Anal. Appl..

[12]  Direct integration of field equations , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.

[13]  Jian-Ming Jin,et al.  Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies , 1998 .

[14]  Alexander B. Yakovlev,et al.  Operator Theory for Electromagnetics: An Introduction , 2001 .

[15]  Demetrio Stojanoff,et al.  Generalized Schur complements and oblique projections , 2002 .

[16]  Alexander B. Yakovlev,et al.  Operator Theory for Electromagnetics , 2002 .

[17]  Ralf Hiptmair,et al.  Coupling of Finite Elements and Boundary Elements in Electromagnetic Scattering , 2003, SIAM J. Numer. Anal..

[18]  Olaf Steinbach,et al.  Numerische Näherungsverfahren für elliptische Randwertprobleme , 2003 .

[19]  R. Hiptmair,et al.  Galerkin Boundary Element Methods for Electromagnetic Scattering , 2003 .

[20]  D. Levadoux,et al.  A new well-conditioned Integral formulation for Maxwell equations in three dimensions , 2005, IEEE Transactions on Antennas and Propagation.

[21]  Daniël De Zutter,et al.  On the Schur complement form of the Dirichlet-to-Neumann operator , 2008 .

[22]  T. Kubo,et al.  Electromagnetic Fields , 2008 .