A Theory of Transformation Monoids: Combinatorics and Representation Theory

The aim of this paper is to develop a theory of finite transformation monoids and in particular to study primitive transformation monoids. We introduce the notion of orbitals and orbital digraphs for transformation monoids and prove a monoid version of D. Higman's celebrated theorem characterizing primitivity in terms of connectedness of orbital digraphs. A thorough study of the module (or representation) associated to a transformation monoid is initiated. In particular, we compute the projective cover of the transformation module over a field of characteristic zero in the case of a transitive transformation or partial transformation monoid. Applications of probability theory and Markov chains to transformation monoids are also considered and an ergodic theorem is proved in this context. In particular, we obtain a generalization of a lemma of P. Neumann, from the theory of synchronizing groups, concerning the partition associated to a transformation of minimal rank.

[1]  I. K. Rystsov,et al.  Rank of a finite automaton , 1992 .

[2]  M. Lawson Inverse Semigroups, the Theory of Partial Symmetries , 1998 .

[3]  Arto Salomaa,et al.  Composition sequences for functions over a finite domain , 2003, Theor. Comput. Sci..

[4]  D. Mcalister,et al.  Characters of finite semigroups , 1972 .

[5]  Mikhail V. Volkov,et al.  Synchronizing Automata with a Letter of Deficiency 2 , 2006, Developments in Language Theory.

[6]  Kenneth S. Brown Semigroup and Ring Theoretical Methods in Probability , 2003 .

[7]  A. N. Trahtman The Černý Conjecture for Aperiodic Automata , 2005 .

[8]  Benjamin Steinberg The Averaging Trick and the Cerný Conjecture , 2010, Developments in Language Theory.

[9]  Benjamin Steinberg,et al.  The Quiver of an Algebra Associated to the Mantaci-Reutenauer Descent Algebra and the Homology of Regular Semigroups , 2008, 0811.1574.

[10]  Flavio D'Alessandro,et al.  The Synchronization Problem for Strongly Transitive Automata , 2008, Developments in Language Theory.

[11]  James Green,et al.  Polynomial representations of GLn , 1980 .

[12]  Benjamin Steinberg,et al.  The Averaging Trick and the černý Conjecture , 2009, Int. J. Found. Comput. Sci..

[13]  Jean-Eric Pin,et al.  Le problème de la synchronisation et la conjecture de Cerný , 1981 .

[14]  W. Magnus,et al.  Varieties of Groups , 1982 .

[15]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[16]  Romano Scozzafava Graphs and finite transformation semigroups , 1973, Discret. Math..

[17]  Mario Petrich,et al.  Inverse semigroups , 1985 .

[18]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[19]  Mikhail V. Volkov,et al.  SOME RESULTS ON ČERNÝ TYPE PROBLEMS FOR TRANSFORMATION SEMIGROUPS , 2004 .

[20]  I. K. Rystsov,et al.  Estimation of the length of reset words for automata with simple idempotents , 2000 .

[21]  Daniel Simson,et al.  Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory , 2006 .

[22]  Bassima Afara,et al.  Morita equivalence of semigroups , 2012 .

[23]  Peter M. Higgins,et al.  Techniques of semigroup theory , 1991 .

[24]  John D. Dixon Permutation representations and rational irreducibility , 2005 .

[25]  P. Diaconis,et al.  Random walks and hyperplane arrangements , 1998 .

[26]  Kenneth S. Brown,et al.  Semigroups, Rings, and Markov Chains , 2000 .

[27]  J. Rhodes,et al.  Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines , 1965 .

[28]  Mikhail V. Volkov,et al.  Synchronizing generalized monotonic automata , 2005, Theor. Comput. Sci..

[29]  A. N. Trahtman,et al.  An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture , 2006, 0709.1197.

[30]  Mario Petrich,et al.  Irreducible matrix representations of finite semigroups , 1969 .

[31]  Benjamin Steinberg,et al.  The Complexity of Finite Semigroups , 2009 .

[32]  Benjamin Steinberg,et al.  Representation Theory of Finite Semigroups over Semirings , 2010, 1004.1660.

[33]  Benjamin Steinberg,et al.  Möbius functions and semigroup representation theory , 2006, J. Comb. Theory, Ser. A.

[34]  I. K. Rystsov Quasioptimal Bound for the Length of Reset Words for Regular Automata , 1995, Acta Cybern..

[35]  L. Dubuc,et al.  Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..

[36]  I. K. Rystsov,et al.  Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..

[37]  A. N. Trahtman,et al.  The road coloring problem , 2007, 0709.0099.

[38]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[39]  Jorge Almeida,et al.  Representation theory of finite semigroups, semigroup radicals and formal language theory , 2008 .

[40]  Jorge Almeida,et al.  Matrix Mortality and the Cerný-Pin Conjecture , 2009, Developments in Language Theory.

[41]  P. Hanlon,et al.  A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .

[42]  J. Howie,et al.  The Subsemigroup Generated By the Idempotents of a Full Transformation Semigroup , 1966 .

[43]  Jarkko Kari,et al.  Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.

[44]  Anders Bjorner Note: Random-to-front shuffles on trees , 2009 .

[45]  D. Rees,et al.  On semi-groups , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[47]  Benjamin Steinberg,et al.  Černý’s conjecture and group representation theory , 2010 .

[48]  Ettore Fornasini,et al.  2D Markov chains , 1990 .

[49]  Benjamin Steinberg,et al.  On the irreducible representations of a finite semigroup , 2007, 0712.2076.

[50]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[51]  Benjamin Steinberg,et al.  Synchronizing groups and automata , 2006, Theor. Comput. Sci..

[52]  Peter M. Neumann Primitive permutation groups and their section-regular partitions , 2009 .

[53]  J. Howie Fundamentals of semigroup theory , 1995 .

[54]  Jarkko Kari,et al.  A Counter Example to a Conjecture Concerning Synchronizing Words in Finite Automata , 2001, Bull. EATCS.

[55]  A. Bjorner,et al.  Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries , 2008, 0805.0083.

[56]  Michael A. Arbib,et al.  Algebraic theory of machines, languages and semigroups , 1969 .

[57]  Bolyai János Matematikai Társulat,et al.  Algebraic theory of semigroups , 1979 .

[58]  Benjamin Steinberg,et al.  The q-theory of Finite Semigroups , 2008 .

[60]  Dominique Perrin,et al.  A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2009, Developments in Language Theory.

[61]  O. Ganyushkin,et al.  Classical Finite Transformation Semigroups: An Introduction , 2008 .

[62]  Benjamin Steinberg Möbius functions and semigroup representation theory II: Character formulas and multiplicities , 2006 .

[63]  J. Pin On two Combinatorial Problems Arising from Automata Theory , 1983 .

[64]  Flavio D'Alessandro,et al.  The Synchronization Problem for Locally Strongly Transitive Automata , 2009, MFCS.

[65]  J. A. Green,et al.  On the Structure of Semigroups , 1951 .