A Maximum Entropy Based Approach to Fault Diagnosis Using Discrete and Continuous Features

: This paper presents a new maximum entropy (ME) based hybrid inference engine to improve the accuracy of diagnostic decisions using mixed continuous-discrete variables. By fusing the complementary fault information provided by discrete and continuous fault features, false alarms due to misclassification and modeling uncertainty can be significantly reduced. Simulation results using a three-tank benchmark system have clearly illustrated the advantages of diagnostics based on mixed continuous-discrete variables. Moreover, in the presence of significant measurement noise, simulation results show that the proposed ME method achieves better performance than the support vector machine classifier.