A ModalWalk Through Space

We investigate the major mathematical theories of space from a modal standpoint: topology, affine geometry, metric geometry, and vector algebra. This allows us to see new fine-structure in spatial patterns which suggests analogies across these mathematical theories in terms of modal, temporal, and conditional logics. Throughout the modal walk through space, expressive power is analyzed in terms of language design, bisimulations, and correspondence phenomena. The result is both unification across the areas visited, and the uncovering of interesting new questions.

[1]  H. Heijmans Morphological image operators , 1994 .

[2]  A. Phillips The macmillan company. , 1970, Analytical chemistry.

[3]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[4]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[5]  Dov M. Gabbay,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects: Volume 2 , 1994 .

[6]  Johan van Benthem,et al.  The Logic of Time , 1983 .

[7]  Konstantinos Georgatos,et al.  Modal Logics for Topological Spaces , 2000, ArXiv.

[8]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[9]  W. Cooley Elementary Geometry , 1871, Nature.

[10]  R. Goldblatt Orthogonality and spacetime geometry , 1987 .

[11]  P. Du Val,et al.  A Modern View of Geometry , 1962 .

[12]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[13]  Carus Paul The Foundation of Mathematics. , 1920 .

[14]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[15]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[16]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[17]  Yde Venema,et al.  Points, Lines and Diamonds: A two-sorted Modal Logic for Projective Planes , 1999, J. Log. Comput..

[18]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[19]  Luis Fariñas del Cerro,et al.  Modal Logics for Incidence Geometries , 1997, J. Log. Comput..

[20]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[21]  Roberto Casati,et al.  Parts And Places , 1999 .

[22]  Eric Hammer,et al.  Logic and Visual Information , 1995 .

[23]  Johan van Benthem Logic and the flow of information , 1995 .

[24]  J. Plato The Axioms of Constructive Geometry , 1995, Ann. Pure Appl. Log..

[25]  A. Tarski Der Aussagenkalkül und die Topologie , 1938 .

[26]  B Shehtman Valentin,et al.  “Everywhere” and “Here”. , 1999 .

[27]  J. Benthem,et al.  Logical Patterns in Space , 2002 .

[28]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[29]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[30]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[31]  D. Harel Recurring dominoes: making the highly undecidable highly understandable , 1985 .

[32]  Philippe Balbiani,et al.  The modal multilogic of geometry , 1998, J. Appl. Non Class. Logics.

[33]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[34]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[35]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[36]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[37]  Yehoshua Bar-Hillel,et al.  Metamathematical Properties of Some Affine Geometries , 1971 .

[38]  Johan van Benthem,et al.  Reasoning About Space: The Modal Way , 2003, J. Log. Comput..

[39]  Johan van Benthem,et al.  Euclidean Hierarchy in Modal Logic , 2003, Stud Logica.

[40]  N. Kurtonina,et al.  Frames and Labels , 1995 .

[41]  M. de Rijke,et al.  Bisimulations for Temporal Logic , 1997, J. Log. Lang. Inf..

[42]  G. Kerdiles,et al.  Saying It with Pictures: a logical landscape of conceptual graphs , 2001 .

[43]  A. Troelstra Lectures on linear logic , 1992 .

[44]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[45]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[46]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[47]  F.J.M.M. Veltman,et al.  Logics for conditionals. , 1985 .

[48]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[49]  H. C. Doets,et al.  Completeness and definability : applications of the Ehrenfeucht game in second-order and intensional logic , 1987 .

[50]  maarten marx,et al.  Arrow logic and multi-modal logic , 1997 .

[51]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[52]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[53]  Patrick J. Hayes,et al.  A Common-Sense Theory of Time , 1985, IJCAI.

[54]  M. de Rijke,et al.  Modal Logic: Extended Modal Logic , 2001 .

[55]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[56]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[57]  Lawrence S. Moss,et al.  Topological Reasoning and the Logic of Knowledge , 1996, Ann. Pure Appl. Log..

[58]  Y. Venema A crash course in arrow logic , 1994 .

[59]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[60]  R. Labrecque The Correspondence Theory , 1978 .

[61]  Carlos Areces,et al.  Logic Engineering. The Case of Description and Hybrid Logics , 2000 .

[62]  Mark Witkowski,et al.  From Images to Bodies: Modelling and Exploiting Spatial Occlusion and Motion Parallax , 2001, IJCAI.

[63]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .