Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents

Aim  Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices.

[1]  Boris Schr,et al.  Constrain to perform: Regularization of habitat models , 2006 .

[2]  Ian P. Woiwod,et al.  What drives community dynamics? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[3]  D. Richardson,et al.  Determinants of distribution of six Pinus species in Catalonia, Spain , 2001 .

[4]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[5]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[6]  Ricard V Solé,et al.  Press perturbations and indirect effects in real food webs. , 2009, Ecology.

[7]  Joseph Tzanopoulos,et al.  Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. , 2008, Ecology letters.

[8]  M. Cadotte Ecological Niches: Linking Classical and Contemporary Approaches , 2004, Biodiversity & Conservation.

[9]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[10]  H. Bugmann A Review of Forest Gap Models , 2001 .

[11]  R. Solé,et al.  Ecological networks and their fragility , 2006, Nature.

[12]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[13]  M. Araújo,et al.  The importance of biotic interactions for modelling species distributions under climate change , 2007 .

[14]  M. V. Price,et al.  A global test of the pollination syndrome hypothesis. , 2009, Annals of botany.

[15]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[16]  T. Hickler,et al.  Increasing range mismatching of interacting species under global change is related to their ecological characteristics , 2012 .

[17]  J. Bascompte,et al.  Ecological networks : beyond food webs Ecological networks – beyond food webs , 2008 .

[18]  Zone of influence models for competition in plantations , 1978, Advances in Applied Probability.

[19]  Ran Nathan,et al.  Long‐Distance Seed Dispersal , 2009 .

[20]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[21]  Ç. Şekercioğlu,et al.  Bird dietary guild richness across latitudes, environments and biogeographic regions , 2012 .

[22]  Donna Spiegelman,et al.  Measurement Error and Misclassification in Statistics and Epidemiology , 2006 .

[23]  Niklaus E. Zimmermann,et al.  Co‐occurrence patterns of trees along macro‐climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. , 2011 .

[24]  Dick Neal,et al.  Introduction to Population Biology , 2018 .

[25]  R. Cooper,et al.  Bird community response to fruit energy. , 2010, The Journal of animal ecology.

[26]  B. Manly Multivariate Statistical Methods : A Primer , 1986 .

[27]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[28]  A M Latimer,et al.  Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. , 2009, Ecology letters.

[29]  G. Mittelbach,et al.  Is There a Latitudinal Gradient in the Importance of Biotic Interactions , 2009 .

[30]  K. Tielbörger,et al.  Root plasticity buffers competition among plants: theory meets experimental data. , 2011, Ecology.

[31]  Boris Schröder,et al.  Decomposing environmental, spatial, and spatiotemporal components of species distributions , 2011 .

[32]  D. Simberloff The Guild Concept and the Structure of Ecological Communities , 1991 .

[33]  Benjamin Smith,et al.  Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA , 2004 .

[34]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[35]  Thomas M. Smith,et al.  Plant functional types : their relevance to ecosystem properties and global change , 1998 .

[36]  Ferenc Jordán,et al.  Weighting, scale dependence and indirect effects in ecological networks: A comparative study , 2007 .

[37]  I. Kühn,et al.  Modelling the impact of climate and land use change on the geographical distribution of leaf anatomy in a temperate flora , 2011 .

[38]  F. Schurr,et al.  Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics , 2012 .

[39]  J. Cornelissen,et al.  Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants , 2008 .

[40]  J. C. Hickman An Introduction to Population Biology , 1981 .

[41]  J. Rotenberry,et al.  Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions , 2008 .

[42]  F. Stuart Chapin,et al.  Functional Matrix: A Conceptual Framework for Predicting Multiple Plant Effects on Ecosystem Processes , 2003 .

[43]  Orr Spiegel,et al.  Mechanisms of long-distance seed dispersal. , 2008, Trends in ecology & evolution.

[44]  N. Zimmermann,et al.  TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale , 2006 .

[45]  Dirk R. Schmatz,et al.  Climate, competition and connectivity affect future migration and ranges of European trees , 2012 .

[46]  M. Luoto,et al.  Biotic interactions improve prediction of boreal bird distributions at macro‐scales , 2007 .

[47]  W. Link,et al.  The North American Breeding Bird Survey Results and Analysis , 1997 .

[48]  Otso Ovaskainen,et al.  Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence , 2010, Proceedings of the Royal Society B: Biological Sciences.

[49]  Pedro Jordano,et al.  Interaction frequency as a surrogate for the total effect of animal mutualists on plants , 2005 .

[50]  S. Cornell,et al.  Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape , 2001, Science.

[51]  J. Leathwick,et al.  COMPETITIVE INTERACTIONS BETWEEN TREE SPECIES IN NEW ZEALAND'S OLD‐GROWTH INDIGENOUS FORESTS , 2001 .

[52]  Thomas Giesecke,et al.  Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model , 2012 .

[53]  Priyanga Amarasekare,et al.  Spatial Dynamics of Foodwebs , 2008 .

[54]  M. Araújo,et al.  Biotic and abiotic variables show little redundancy in explaining tree species distributions , 2010 .

[55]  Sudipto Banerjee,et al.  HIERARCHICAL SPATIAL MODELS FOR PREDICTING TREE SPECIES ASSEMBLAGES ACROSS LARGE DOMAINS. , 2009, The annals of applied statistics.

[56]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[57]  Marie-Josée Fortin,et al.  From Graphs to Spatial Graphs , 2010 .

[58]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[59]  M. Wells,et al.  Variations and Fluctuations of the Number of Individuals in Animal Species living together , 2006 .

[60]  C. M. Mutshinda,et al.  A multispecies perspective on ecological impacts of climatic forcing. , 2011, The Journal of animal ecology.

[61]  Ricard V. Solé,et al.  Self-Organization in Complex Ecosystems. (MPB-42) , 2006 .

[62]  R. Solé,et al.  Topological properties of food webs: from real data to community assembly models Oikos 102 , 2003 .

[63]  R. Macarthur,et al.  The Limiting Similarity, Convergence, and Divergence of Coexisting Species , 1967, The American Naturalist.

[64]  Owen L. Petchey,et al.  Interaction strengths in food webs: issues and opportunities , 2004 .

[65]  N. Waser,et al.  Size-specific interaction patterns and size matching in a plant-pollinator interaction web. , 2009, Annals of botany.

[66]  W. D. Kissling,et al.  Woody plants and the prediction of climate-change impacts on bird diversity , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  Monika Schwager,et al.  How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach , 2011, Biodiversity and Conservation.

[68]  M. Emmerson,et al.  MEASUREMENT OF INTERACTION STRENGTH IN NATURE , 2005 .

[69]  Stephen Sitch,et al.  Dynamic global vegetation modelling: quantifying terrestrial ecosystem responses to large-scale environmental change , 2007 .

[70]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[71]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[72]  R. O’Hara,et al.  A review of Bayesian variable selection methods: what, how and which , 2009 .

[73]  Otso Ovaskainen,et al.  Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. , 2010, Ecology.

[74]  Jordi Bascompte,et al.  Missing and forbidden links in mutualistic networks , 2011, Proceedings of the Royal Society B: Biological Sciences.

[75]  L. L. Cavalli-Sforza,et al.  Population Studies: Animal Ecology and Demography. , 1959 .

[76]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[77]  O. Bjørnstad,et al.  Travelling waves and spatial hierarchies in measles epidemics , 2001, Nature.

[78]  J. Bascompte,et al.  Global change and species interactions in terrestrial ecosystems. , 2008, Ecology letters.

[79]  D. Fink,et al.  Spatiotemporal exploratory models for broad-scale survey data. , 2010, Ecological applications : a publication of the Ecological Society of America.

[80]  Richard V. Solé,et al.  Self-Organization in Complex Ecosystems. , 2006 .

[81]  G. Evelynhutchinson,et al.  Population studies: Animal ecology and demography , 1991 .

[82]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[83]  David A. Wardle,et al.  Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? , 1998 .

[84]  I. Woiwod,et al.  Flying in the face of change , 1994 .

[85]  Robert D Holt,et al.  A framework for community interactions under climate change. , 2010, Trends in ecology & evolution.

[86]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[87]  W. D. Kissling,et al.  Long-Term Impacts of Fuelwood Extraction on a Tropical Montane Cloud Forest , 2008, Ecosystems.

[88]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[89]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[90]  Drew Purves,et al.  The Probabilistic Niche Model Reveals the Niche Structure and Role of Body Size in a Complex Food Web , 2010, PloS one.

[91]  Jordi Bascompte,et al.  Temporal dynamics in a pollination network. , 2008, Ecology.

[92]  Carsten Rahbek,et al.  Food plant diversity as broad-scale determinant of avian frugivore richness , 2007, Proceedings of the Royal Society B: Biological Sciences.

[93]  Sandra Díaz,et al.  Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants , 2008 .

[94]  Daniel B. Stouffer,et al.  Origin of compartmentalization in food webs. , 2010, Ecology.

[95]  Andrew O. Finley,et al.  Comparing spatially‐varying coefficients models for analysis of ecological data with non‐stationary and anisotropic residual dependence , 2011 .

[96]  J. Bascompte,et al.  The modularity of pollination networks , 2007, Proceedings of the National Academy of Sciences.

[97]  Frank M. Schurr,et al.  Colonization and persistence ability explain the extent to which plant species fill their potential range , 2007 .

[98]  Ingolf Kühn,et al.  Climate change can cause spatial mismatch of trophically interacting species. , 2008, Ecology.

[99]  Ran Nathan,et al.  Increases in air temperature can promote wind-driven dispersal and spread of plants , 2009, Proceedings of the Royal Society B: Biological Sciences.

[100]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[101]  R. Holt Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives , 2009, Proceedings of the National Academy of Sciences.

[102]  S. Lavorel,et al.  Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail , 2002 .