TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control

[1]  P. Kirchhof,et al.  2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. , 2016, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[2]  P. Kirchhof,et al.  2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. , 2016, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[3]  P. Kirchhof,et al.  2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. , 2016, European heart journal.

[4]  H. Pak,et al.  Prolonged atrial refractoriness predicts the onset of atrial fibrillation: A 12-year follow-up study. , 2016, Heart rhythm.

[5]  M. Borggrefe,et al.  Upregulation of K2P3.1 K+ Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation , 2015, Circulation.

[6]  X. Wehrens,et al.  Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation , 2015, Basic Research in Cardiology.

[7]  H. Katus,et al.  Atrial Fibrillation Complicated by Heart Failure Induces Distinct Remodeling of Calcium Cycling Proteins , 2015, PloS one.

[8]  Xiaobin Luo,et al.  Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling. , 2015, Circulation research.

[9]  H. Katus,et al.  Modulation of K2P2.1 and K2P10.1 K+ channel sensitivity to carvedilol by alternative mRNA translation initiation , 2014, British journal of pharmacology.

[10]  H. Katus,et al.  Inhibition of cardiac two-pore-domain K+ (K2P) channels--an emerging antiarrhythmic concept. , 2014, European journal of pharmacology.

[11]  A. Draguhn,et al.  The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. , 2014, Journal of the American College of Cardiology.

[12]  W. Wenzel,et al.  Cardiac expression and atrial fibrillation-associated remodeling of K₂p2.1 (TREK-1) K⁺ channels in a porcine model. , 2014, Life sciences.

[13]  Nazem Akoum,et al.  Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. , 2014, JAMA.

[14]  H. Katus,et al.  Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. , 2013, European heart journal.

[15]  H. Katus,et al.  Biological Heart Rate Reduction Through Genetic Suppression of Gαs Protein in the Sinoatrial Node , 2012, Journal of the American Heart Association.

[16]  S. Nattel,et al.  Novel molecular targets for atrial fibrillation therapy , 2012, Nature Reviews Drug Discovery.

[17]  H. Katus,et al.  Genetic suppression of Gαs protein provides rate control in atrial fibrillation , 2012, Basic Research in Cardiology.

[18]  H. Katus,et al.  Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. , 2012, Heart rhythm.

[19]  M. Koch,et al.  Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. , 2011, Cardiovascular research.

[20]  James Elber Duverger,et al.  Arrhythmogenic left atrial cellular electrophysiology in a murine genetic long QT syndrome model. , 2011, Cardiovascular research.

[21]  Niels Voigt,et al.  Recent advances in the molecular pathophysiology of atrial fibrillation. , 2011, The Journal of clinical investigation.

[22]  S. Nattel,et al.  Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. , 2011, Cardiovascular research.

[23]  E. Isacoff,et al.  Optical probing of a dynamic membrane interaction that regulates the TREK1 channel , 2011, Proceedings of the National Academy of Sciences.

[24]  G. Breithardt,et al.  Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability. , 2010, Heart rhythm.

[25]  Péter Enyedi,et al.  Molecular Background of Leak K (cid:1) Currents: Two-Pore Domain Potassium Channels , 2010 .

[26]  G. Breithardt,et al.  Atrial Arrhythmias in Long‐QT Syndrome under Daily Life Conditions: A Nested Case Control Study , 2009, Journal of cardiovascular electrophysiology.

[27]  S. Nattel,et al.  Atrial structural remodeling as an antiarrhythmic target. , 2008, Journal of cardiovascular pharmacology.

[28]  Dierk Thomas,et al.  Alternative Translation Initiation in Rat Brain Yields K2P2.1 Potassium Channels Permeable to Sodium , 2008, Neuron.

[29]  Stanley Nattel,et al.  Calcium-Handling Abnormalities Underlying Atrial Arrhythmogenesis and Contractile Dysfunction in Dogs With Congestive Heart Failure , 2008, Circulation. Arrhythmia and electrophysiology.

[30]  S. Nattel,et al.  Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. , 2007, Physiological reviews.

[31]  Stanley Nattel,et al.  Atrial Ionic Remodeling Induced by Atrial Tachycardia in the Presence of Congestive Heart Failure , 2004, Circulation.

[32]  J. K. Donahue,et al.  Pathophysiological findings in a model of persistent atrial fibrillation and severe congestive heart failure. , 2004, Cardiovascular research.

[33]  S. Nattel,et al.  Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. , 2003, Cardiovascular research.

[34]  G. Breithardt,et al.  Prolonged Atrial Action Potential Durations and Polymorphic Atrial Tachyarrhythmias in Patients with Long QT Syndrome , 2003, Journal of cardiovascular electrophysiology.

[35]  S. Nattel,et al.  Consequences of Atrial Tachycardia-Induced Remodeling Depend on the Preexisting Atrial Substrate , 2002, Circulation.

[36]  Detlef Bockenhauer,et al.  Potassium leak channels and the KCNK family of two-p-domain subunits , 2001, Nature Reviews Neuroscience.

[37]  G. Breithardt,et al.  A Patient with “Atrial Torsades de Pointes” , 2000, Journal of cardiovascular electrophysiology.

[38]  John Calvin Reed,et al.  Myocardial cell death in fibrillating and dilated human right atria. , 1999, Journal of the American College of Cardiology.

[39]  M. Borggrefe,et al.  Upregulation of K 2 P 3 . 1 K + Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation , 2015 .

[40]  P. Kirchhof,et al.  Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. , 2011, Physiological reviews.

[41]  S. Nattel,et al.  Atrial Fibrillation Atrial Fibrillation Pathophysiology Implications for Management , 2011 .