Adaptive Switching of Variable-Fidelity Models in Population-based Optimization Algorithms

[1]  M. Hazelton,et al.  Plug-in bandwidth matrices for bivariate kernel density estimation , 2003 .

[2]  Vassili Toropov,et al.  Metamodel-based collaborative optimization framework , 2009 .

[3]  Kazuomi Yamamoto,et al.  Efficient Optimization Design Method Using Kriging Model , 2005 .

[4]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[5]  Bernhard Sendhoff,et al.  Individual-based Management of Meta-models for Evolutionary Optimization with Application to Three-Dimensional Blade Optimization , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[6]  Hasan Kurtaran,et al.  Application of response surface methodology in the optimization of cutting conditions for surface roughness , 2005 .

[7]  Jie Zhang,et al.  A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation , 2013 .

[8]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[9]  A. Messac,et al.  Predictive quantification of surrogate model fidelity based on modal variations with sample density , 2015 .

[10]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[11]  Sankaran Mahadevan,et al.  Efficient Global Surrogate Modeling for Reliability-Based Design Optimization , 2013 .

[12]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[13]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[14]  Achille Messac,et al.  An adaptive hybrid surrogate model , 2012, Structural and Multidisciplinary Optimization.

[15]  A. Messac,et al.  A Novel Approach to Simultaneous Selection of Surrogate Models, Constitutive Kernels, and Hyper-parameter Values , 2014 .

[16]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[17]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[18]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[19]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[20]  Ali Mehmani,et al.  Characterizing Uncertainty Attributable to Surrogate Models , 2014 .

[21]  Piotr Breitkopf,et al.  Model reduction for multidisciplinary optimization - application to a 2D wing , 2008 .

[22]  Andreas Zell,et al.  Evolution strategies with controlled model assistance , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[23]  Jean-Yves Trépanier,et al.  Variable-fidelity optimization: Efficiency and robustness , 2006 .

[24]  Raphael T. Haftka,et al.  Variable-complexity aerodynamic optimization of a high-speed civil transport wing , 1994 .

[25]  Bernhard Sendhoff,et al.  Reducing Fitness Evaluations Using Clustering Techniques and Neural Network Ensembles , 2004, GECCO.

[26]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[27]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[28]  R. Haftka Combining global and local approximations , 1991 .

[29]  Masashi Sugiyama,et al.  Active Learning in Approximately Linear Regression Based on Conditional Expectation of Generalization Error , 2006, J. Mach. Learn. Res..

[30]  Timothy W. Simpson,et al.  Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not , 2008 .

[31]  Theresa Dawn Robinson,et al.  Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping , 2008 .

[32]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[33]  A. Messac,et al.  Concurrent Surrogate Model Selection (COSMOS) Based on Predictive Estimation of Model Fidelity , 2014, DAC 2014.

[34]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[35]  J. F. Rodríguez,et al.  Sequential approximate optimization using variable fidelity response surface approximations , 2000 .

[36]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .