Theoretical drug design: 6‐Azauridine‐5′‐phosphate—its X‐ray crystal structure, potential energy maps, and mechanism of inhibition of orotidine‐5′‐phosphate decarboxylase

The cytostatic drug 6‐azauridine is converted in vivo to 6‐azauridine‐5′‐phosphate (z6Urd‐5′‐P), which blocks the enzyme orotidine‐5′‐phosphate decarboxylase (Ord‐5′‐Pdecase) and therefore inhibits the de novo production of uridine‐5′‐phosphate (Urd‐5′‐P). In order to relate the structure and function of z6Urd‐5′‐P, it was crystallized as trihydrate, space group P212121 with a = 20.615 Å, b = 6.265 Å, c = 11.881 Å, and the structure established by Patterson methods. Atomic parameters were refined by full‐matrix least‐squares methods to R = 0.066 using 1638 counter measured x‐ray data. The ribose of z6Urd‐5′‐P is in a twisted C(2′)‐exo, C(3′)endo conformation, the heterocycle is in extreme anti position with angle N(6)‐N(1)‐C(1′)‐O(4′) at 86.3°, and the orientation about the C(4′)‐C(5′) bond is gauche, trans in contrast to gauche, gauche found for all the other 5′‐ribonucleotides. Conformational energy calculations show that z6Urd‐5′‐P may adopt an extreme anti conformation not allowed to Urd‐5′‐P, and they also predict the same unusual trans, gauche conformation about the C(4′)‐C(5′) bond in orotidine‐5′‐phosphate (Ord‐5′‐P) and in z6Urd‐5′‐P, which renders the distances O(2)…O(5′) in z6Urd‐5′‐P and O(7)…O(5′) in Ord‐5′‐P comparable. On this basis the function of z6Urd‐5′‐P as an Ord‐5′‐Pdecase inhibitor can be explained as being due to its structural similarity with the substrate Ord‐5′‐P and further clarifies the inhibitory action of 5′‐nucleotides bearing the heterocycles oxipurinol, xanthine, or allopurinol [J. A. Fyfe, R. L. Miller, and T. A. Krenitsky, J. Biol. Chem. 248, 3801 (1973)]. With this in mind, new inhibitors for Ord‐5′‐Pdecase may be designed.

[1]  M. Viswamitra,et al.  An uncommon nucleotide conformation shown by molecular structure of deoxyuridine-5′-phosphate and nucleic acid stereochemistry , 1975, Nature.

[2]  G. Brown,et al.  Interconversion of different molecular weight forms of human erythrocyte orotidylate decarboxylase. , 1975, The Journal of biological chemistry.

[3]  R. Langridge,et al.  Classical potential energy calculations for ApA, CpC, GpG, and UpU. The influence of the bases on RNA subunit conformations , 1975, Biopolymers.

[4]  M. Dentini,et al.  Conformational analysis of polynucleotide chains. Double‐stranded structures , 1975, Biopolymers.

[5]  H. Bürgi Stereochemistry of Reaction Paths as Determined from Crystal Structure Data—A Relationship between Structure and Energy , 1975 .

[6]  D. Hodgson,et al.  High-anti conformation in o-azanucleosides. The crystal and molecular structure of 6-azacytidine. , 1974, Biochemistry.

[7]  M. Viswamitra,et al.  Molecular and crystal structure of deoxyguanosine 5′-phosphate , 1974, Nature.

[8]  D. Hodgson,et al.  8-Azaadenosine. Crystallographic evidence for a "high-anti" conformation around a shortened glycosidic linkage. , 1974, Journal of the American Chemical Society.

[9]  D. Hodgson,et al.  Aza analogs of nucleic acid constituents. IV. The crystal and molecular structure of 6‐azauracil , 1974 .

[10]  S. Leach,et al.  An obligatory α‐helical amino acid residue , 1973 .

[11]  M. Sundaralingam,et al.  Conformational studies on pyrimidine 5′‐monophosphates and 3′,5′‐diphosphates. Effect of the phosphate groups on the backbone conformation of polynucleotides , 1973, Biopolymers.

[12]  W. Saenger Structure and function of nucleosides and nucleotides. , 1973, Angewandte Chemie.

[13]  F. Takusagawa,et al.  The Crystal Structure of Orotic Acid Monohydrate (Vitamin B13) , 1973 .

[14]  R. Miller,et al.  Kinetic properties and inhibition of orotidine 5'-phosphate decarboxylase. Effects of some allopurinol metabolites on the enzyme. , 1973, The Journal of biological chemistry.

[15]  D. Suck,et al.  6-Azauridine-5′-phosphoric Acid: Unusual Molecular Structure and Functional Mechanism , 1973, Nature.

[16]  W. Saenger,et al.  6-Azauridine, a nucleoside with unusual ribose conformation. The molecular and crystal structure. , 1973, Journal of molecular biology.

[17]  M. Sundaralingam,et al.  Crystal structure and molecular conformation of formycin monohydrates. Possible origin of the anomalous circular dichroic spectra in formycin mono- and polynucleotides. , 1973, Biochemistry.

[18]  D. Pérahia,et al.  Molecular orbital calculations on the conformation of nucleic acids and their constituents. IV. Conformations about the exocyclic C(4')-C(5') bond. , 1972, Biochimica et biophysica acta.

[19]  D. Suck,et al.  Molecular and crystal structure of 6-methyluridine. A pyrimidine nucleoside in the syn conformation. , 1972, Journal of the American Chemical Society.

[20]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. XXIX. Crystal and molecular structure of allopurinol, a potent inhibitor of xanthine oxidase , 1972 .

[21]  B. Pullman,et al.  The sign of theB 2u cotton effect and the conformation of pyrimidine and azapyrimidine nucleosides , 1972, FEBS letters.

[22]  D. Suck,et al.  Conformation of 6-Methyluridine — a Pyrimidine Nucleoside in the syn Conformation , 1972, Nature.

[23]  T. Ulbricht,et al.  Optical rotatory studies on nucleic acid derivatives. Eta-pi transitions and the relation of the B 2u cotton effect to conformation in pyrimidine and azapyrimidine nucleosides. , 1971, European journal of biochemistry.

[24]  N. Seeman,et al.  Nucleic acid conformation: crystal structure of a naturally occurring dinucleoside phosphate (UpA). , 1971, Nature: New biology.

[25]  W. Saenger,et al.  6-azauridine: crystal structure and conformation of the antileukemia drug. , 1971, Biochemical and biophysical research communications.

[26]  W. Saenger,et al.  Stereochemistry of a substrate for pancreatic ribonuclease. Crystal and molecular structure of the triethylammonium salt of uridine 2', 3'-0,0-cyclophosphorothioate , 1970 .

[27]  A. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. II. Allowed conformations of the monomer unit for different ribose puckerings. , 1970, Biochimica et biophysica acta.

[28]  A. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. V. Conformational energy of a ribose‐phosphale unit , 1969 .

[29]  A. V. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. IV. Conformational energy of base‐sugar units , 1969 .

[30]  A. M. Liquori The stereochemical code and the logic of a protein molecule , 1969, Quarterly Reviews of Biophysics.

[31]  EDOARDO GIGLIO,et al.  Calculation of Van der Waals Interactions and Hydrogen Bonding in Crystals , 1969, Nature.

[32]  K. Trueblood,et al.  THE CRYSTAL AND MOLECULAR STRUCTURE OF D(+)-BARIUM URIDINE-5'-PHOSPHATE. , 1965, Acta crystallographica.

[33]  A. M. Liquori,et al.  Van Der Waals Interaction and the Stability of Helical Polypeptide Chains , 1965, Nature.

[34]  C. Romming,et al.  A refinement of the crystal structure of cytidine , 1965 .

[35]  P. Reichard,et al.  Uridine and deoxyuridine phosphorylases from Ehrlich ascites tumor. , 1961, Biochimica et biophysica acta.

[36]  O. Sköld Uridine Kinase from Ehrlich Ascites Tumor: Purification and Properties , 1960 .

[37]  Handschumacher Re Orotidylic Acid Decarboxylase: Inhibition Studies with Azauridine 5'-Phosphate , 1960 .

[38]  S. Arnott,et al.  The geometry of nucleic acids. , 1970, Progress in biophysics and molecular biology.

[39]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[40]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[41]  J. Skoda Mechanism of Action and Application of Azapyrimidines , 1963 .