Low rank approximation and regression in input sparsity time
暂无分享,去创建一个
[1] Alan M. Frieze,et al. Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.
[2] Frank McSherry,et al. Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[3] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[4] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[5] Christos Boutsidis,et al. Improved Matrix Algorithms via the Subsampled Randomized Hadamard Transform , 2012, SIAM J. Matrix Anal. Appl..
[6] Anastasios Zouzias,et al. A Matrix Hyperbolic Cosine Algorithm and Applications , 2011, ICALP.
[7] Lap Chi Lau,et al. Fast matrix rank algorithms and applications , 2012, JACM.
[8] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[9] Mikkel Thorup,et al. Tabulation based 4-universal hashing with applications to second moment estimation , 2004, SODA '04.
[10] S. Muthukrishnan,et al. Faster least squares approximation , 2007, Numerische Mathematik.
[11] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[12] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[13] Anirban Dasgupta,et al. A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.
[14] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[15] David P. Woodruff,et al. Subspace Embeddings for the Polynomial Kernel , 2014, NIPS.
[16] Avner Magen,et al. Low rank matrix-valued chernoff bounds and approximate matrix multiplication , 2010, SODA '11.
[17] U. Haagerup. The best constants in the Khintchine inequality , 1981 .
[18] Dimitris Achlioptas,et al. On Spectral Learning of Mixtures of Distributions , 2005, COLT.
[19] Nikolaos M. Freris,et al. Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..
[20] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[21] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[22] Santosh S. Vempala,et al. The Spectral Method for General Mixture Models , 2008, SIAM J. Comput..
[23] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[24] Daniel M. Kane,et al. A Sparser Johnson-Lindenstrauss Transform , 2010, ArXiv.
[25] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[26] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[27]
David P. Woodruff,et al.
Subspace Embeddings and
[28] Moses Charikar,et al. Finding frequent items in data streams , 2002, Theor. Comput. Sci..
[29] Anna R. Karlin,et al. Spectral analysis of data , 2001, STOC '01.
[30] Michael W. Mahoney,et al. Quantile Regression for Large-Scale Applications , 2013, SIAM J. Sci. Comput..
[31] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[32] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[33] Michael A. Saunders,et al. LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..
[34] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods , 2006, APPROX-RANDOM.
[35] David P. Woodruff,et al. Sketching Structured Matrices for Faster Nonlinear Regression , 2013, NIPS.
[36] Amos Fiat,et al. Web search via hub synthesis , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[37] Daniel M. Kane,et al. Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.
[38] C. Fombrun,et al. Matrix , 1979, Encyclopedic Dictionary of Archaeology.
[39] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..
[40] Gary L. Miller,et al. Iterative Approaches to Row Sampling , 2012, ArXiv.
[41] David P. Woodruff,et al. Fast approximation of matrix coherence and statistical leverage , 2011, ICML.
[42] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[43] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[44] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[45] Christos Boutsidis,et al. Random Projections for Support Vector Machines , 2012, AISTATS.
[46] L. Trefethen,et al. Numerical linear algebra , 1997 .
[47] Santosh S. Vempala,et al. Latent Semantic Indexing , 2000, PODS 2000.
[48] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Row-Based Methods , 2006, ESA.
[49] H. En. Lower Bounds for Oblivious Subspace Embeddings , 2013 .
[50] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[51] Prabhakar Raghavan,et al. Competitive recommendation systems , 2002, STOC '02.
[52] Rasmus Pagh,et al. Compressed matrix multiplication , 2011, ITCS '12.
[53] Christos Boutsidis,et al. Random Projections for Linear Support Vector Machines , 2012, TKDD.
[54] David P. Woodruff,et al. Numerical linear algebra in the streaming model , 2009, STOC '09.
[55] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[56] David P. Woodruff,et al. Fast moment estimation in data streams in optimal space , 2010, STOC '11.
[57] Trac D. Tran,et al. A fast and efficient algorithm for low-rank approximation of a matrix , 2009, STOC '09.
[58] Dan Suciu,et al. Journal of the ACM , 2006 .
[59] F. T. Wright,et al. A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .
[60] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[61] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[62] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[63] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[64] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[65] S. Muthukrishnan,et al. Sampling algorithms for l2 regression and applications , 2006, SODA '06.
[66] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[67] David P. Woodruff,et al. Fast Manhattan sketches in data streams , 2010, PODS '10.
[68] Huy L. Nguyen,et al. Sparsity lower bounds for dimensionality reducing maps , 2012, STOC '13.
[69] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..