Beam splitting and entanglement generation: excited coherent states

We study the mathematical properties of the excited coherent states, which are obtained through actions of a photon creation operator of the mode optical field on its corresponding coherent state, by analyzing the minimal set of Klauder’s coherent states. Using linear entropy as a measure of entanglement, we investigate in detail the entanglement generated via a beam splitter when an excited coherent state is injected on one input mode and vacuum state is injected on the other one. Finally, we examine the physical properties of the excited coherent states through the Mandel’s parameter and the Wehrl entropy and we give the correlation between these parameters and the entanglement of the output state.

[1]  Y. Hassouni,et al.  Entanglement generation from deformed spin coherent states using a beam splitter , 2009 .

[2]  Sanders,et al.  Entangled coherent states. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  Tomoyuki Morimae,et al.  Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation , 2010, 1003.0293.

[4]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Ai-Xi Chen,et al.  Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement , 2009, 0912.4617.

[6]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[7]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[8]  Construction of coherent states for physical algebraic systems (7 pages) , 2004, math-ph/0408030.

[9]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[10]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[11]  C. Gerry,et al.  Path Integrals and Coherent States of Su(2) and Su(1, 1) , 1992 .

[12]  C. Gerry,et al.  Beam splitting and entanglement: Generalized coherent states, group contraction, and the classical limit , 2005 .

[13]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[14]  Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[15]  K. Berrada,et al.  Generalized Spin Coherent States: Construction and Some Physical Properties , 2011 .

[16]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[17]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[18]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[19]  Jan Peřina,et al.  Quantum optics and fundamentals of physics , 1994 .

[20]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[21]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[22]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[23]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[24]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[25]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[26]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[27]  K. Berrada,et al.  Maximal entanglement of bipartite spin states in the context of quantum algebra , 2011 .

[28]  J. Morton,et al.  Quantum metrology with molecular ensembles , 2010 .

[29]  K. Berrada,et al.  Generalized Heisenberg algebra coherent states for power-law potentials , 2010, 1004.4384.

[30]  G. Tóth,et al.  Entanglement detection based on interference and particle counting (6 pages) , 2003, quant-ph/0306086.

[31]  Generation of NPT Entanglement from Nonclassical Photon Statistics , 2006, quant-ph/0603255.

[32]  Collett,et al.  Nonlocality of a single photon. , 1991, Physical review letters.

[33]  H. Eleuch,et al.  Autocorrelation function of microcavity-emitting field in the non-linear regime , 2010 .

[34]  L. Mandel,et al.  Observation of Sub-Poissonian Photon Statistics , 1983 .

[35]  Zheng-Fu Han,et al.  Security of counterfactual quantum cryptography , 2010, 1007.3066.

[36]  Lee,et al.  Optical homodyne measurements and entangled coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  H. Eleuch Photon statistics of light in semiconductor microcavities , 2008 .

[38]  A. Wehrl On the relation between classical and quantum-mechanical entropy , 1979 .

[39]  Classicality of spin-coherent states via entanglement and distinguishability , 2002, quant-ph/0208179.

[40]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[41]  I. Chuang,et al.  Quantum Computation and Quantum Information: Entropy and information , 2010 .

[42]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[43]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[44]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[45]  H. Eleuch,et al.  Nonlinear dissipation and the quantum noise of light in semiconductor microcavities , 2004 .

[46]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[47]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.