Capacity Pre-Log of Noncoherent SIMO Channels Via Hironaka's Theorem
暂无分享,去创建一个
Erwin Riegler | Helmut Bölcskei | Bernd Sturmfels | Giuseppe Durisi | Veniamin I. Morgenshtern | Shaowei Lin | Wei Yang | B. Sturmfels | G. Durisi | H. Bölcskei | Erwin Riegler | Wei Yang | V. Morgenshtern | Shaowei Lin
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] 渡邊 澄夫. Algebraic geometry and statistical learning theory , 2009 .
[3] Erwin Riegler,et al. Capacity pre-log of SIMO correlated block-fading channels , 2011, 2011 8th International Symposium on Wireless Communication Systems.
[4] Ali Esmaili,et al. Probability and Random Processes , 2005, Technometrics.
[5] Thomas M. Cover,et al. Elements of information theory (2. ed.) , 2006 .
[6] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[7] Tobias Koch,et al. On heating up and fading in communication channels , 2009 .
[8] Amos Lapidoth,et al. Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels , 2003, IEEE Trans. Inf. Theory.
[9] Thomas L. Marzetta,et al. Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.
[10] Amos Lapidoth,et al. On the asymptotic capacity of stationary Gaussian fading channels , 2005, IEEE Transactions on Information Theory.
[11] H. Luetkepohl. The Handbook of Matrices , 1996 .
[12] W. Rudin. Principles of mathematical analysis , 1964 .
[13] Erwin Riegler,et al. On the Capacity of Large-MIMO Block-Fading Channels , 2012, IEEE Journal on Selected Areas in Communications.
[14] R. Cooke. Real and Complex Analysis , 2011 .
[15] Harold R. Parks,et al. A Primer of Real Analytic Functions , 1992 .
[16] Thomas L. Marzetta,et al. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading , 2000, IEEE Trans. Inf. Theory.
[17] R. A. Doney,et al. 4. Probability and Random Processes , 1993 .
[18] T. Tao. An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.
[19] Jens Markus Melenk,et al. Institute for Analysis and Scientific Computing , 2015 .
[20] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[21] Erwin Riegler,et al. Noncoherent SIMO pre-log via resolution of singularities , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[22] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .
[23] Helmut Bölcskei,et al. The SIMO pre-log can be larger than the SISO pre-log , 2009, 2010 IEEE International Symposium on Information Theory.
[24] Yingbin Liang,et al. Capacity of noncoherent time-selective Rayleigh-fading channels , 2004, IEEE Transactions on Information Theory.
[25] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[26] Erwin Riegler,et al. A lower bound on the noncoherent capacity pre-log for the MIMO channel with temporally correlated fading , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[27] I. Miller. Probability, Random Variables, and Stochastic Processes , 1966 .
[28] Klaus Fritzsche,et al. From holomorphic functions to complex manifolds , 2002 .
[29] P. Maher,et al. Handbook of Matrices , 1999, The Mathematical Gazette.
[30] Emre Telatar,et al. Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..
[31] Lizhong Zheng,et al. Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel , 2002, IEEE Trans. Inf. Theory.