Maintaining convergence properties of BiCGstab methods in finite precision arithmetic

It is well-known that Bi-CG can be adapted so that hybrid methods with computational complexity almost similar to Bi-CG can be constructed, in which it is attempted to further improve the convergence behavior. In this paper we will study the class of BiCGstab methods.In many applications, the speed of convergence of these methods appears to be determined mainly by the incorporated Bi-CG process, and the problem is that the Bi-CG iteration coefficients have to be determined from the BiCGstab process. We will focus our attention to the accuracy of these Bi-CG coefficients, and how rounding errors may affect the speed of convergence of the BiCGstab methods. We will propose a strategy for a more stable determination of the Bi-CG iteration coefficients and by experiments we will show that this indeed may lead to faster convergence.

[1]  A. Greenbaum Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .

[2]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[3]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[4]  Tony F. Chan,et al.  A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..

[5]  T. Chan,et al.  An analysis of the composite step biconjugate gradient method , 1993 .

[6]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[7]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[10]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[11]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[12]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[13]  U. Yang Preconditioned Conjugate Gradient-Like Methods for Nonsymmetric Linear Systems , 1992 .

[14]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[15]  C. Paige Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .

[16]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[17]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[18]  Zhaojun Bai,et al.  Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem , 1994 .

[19]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[20]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[21]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[22]  Gerard L. G. Sleijpen,et al.  Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.

[23]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[24]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[25]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .