Adaptive mesh generation for curved domains

This paper considers the technologies needed to support the creation of adaptively constructed meshes for general curved three-dimensional domains and outlines one set of solutions for providing them. A brief review of an effective way to integrate mesh generation/adaptation with CAD geometries is given. A set of procedures that support general h-adaptive refinement based on a mesh metric field is given. This is followed by examples that demonstrate the ability of the procedures to adaptively construct anisotropic meshes for flow problems. A procedure for the generation of strongly graded, curved meshes as needed for effective hp-adaptive simulations is also given.

[1]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[2]  I. Babuska,et al.  Numerical treatment of vertex singularities and intensity factors for mixed boundary value problems for the Laplace equation in R 3 , 1994 .

[3]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[4]  J. Tinsley Oden,et al.  Practical methods for a posteriori error estimation in engineering applications , 2003 .

[5]  Robert M. O'Bara,et al.  p-Version Mesh Generation Issues , 2002, IMR.

[6]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[7]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[8]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[9]  Robert M. O'Bara,et al.  Attribute Management System for Engineering Analysis , 2002, Engineering with Computers.

[10]  M. Shephard,et al.  Reliability of automatic 3D mesh generation , 1992 .

[11]  M. J. Wozny,et al.  Geometric modeling for CAD applications : selected and expanded papers from the IFIP WG 5.2 Working Conference, Rensselaerville, NY, USA, 12-16 May 1986 , 1988 .

[12]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[13]  Jean-François Remacle,et al.  An algorithm oriented mesh database , 2003, IMR.

[14]  Mark S. Shephard Meshing environment for geometry-based analysis , 2000 .

[15]  Joe Walsh,et al.  Accessing CAD Geometry for Mesh Generation , 2003, IMR.

[16]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[17]  I. Babuska,et al.  Finite element method for solving problems with singular solutions , 1996 .

[18]  Mark S. Shephard,et al.  Automated adaptive two-dimensional system for the hp-version of the finite element method , 1991 .

[19]  Mark S. Shephard,et al.  Boundary layer mesh generation for viscous flow simulations , 2000 .

[20]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[21]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[22]  Ernst Rank,et al.  An expert system for the optimal mesh design in the hp‐version of the finite element method , 1987 .

[23]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[24]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[25]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[26]  Robert M. O'Bara,et al.  Towards curvilinear meshing in 3D: the case of quadratic simplices , 2001, Comput. Aided Des..

[27]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[28]  Mark E. Botkin,et al.  Optimum Shape: Automated Structural Design , 1986 .

[29]  Ivo Babuška,et al.  Uncertainties in Engineering Design. Mathematical Theory and Numerical Experience. , 1986 .

[30]  G. Kunert Toward anisotropic mesh construction and error estimation in the finite element method , 2002 .

[31]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[32]  Ivo Babuška,et al.  Reliable stress and fracture mechanics analysis of complex components using a h–p version of FEM , 1995 .