Valuation of Multiple Exercise Options with Energy Applications

We develop least squares Monte Carlo (LSM) and approximate linear programming (ALP) methods for valuing multiple exercise options, such as energy swing and storage options, using term structure models. Our numerical and theoretical investigation shows the superiority of a rarely used LSM variant for estimating lower and upper bounds on the option value over the standard LSM version and the ALP approach. We also structurally relate the seemingly different LSM and ALP methods using the concept of surrogate relaxations. This analysis motivates further research into surrogate relaxations of approximate linear programs.

[1]  Amitabh Sinha,et al.  Integrated Optimization of Procurement, Processing, and Trade of Commodities , 2011, Oper. Res..

[2]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[3]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[4]  N. Meinshausen,et al.  MONTE CARLO METHODS FOR THE VALUATION OF MULTIPLE‐EXERCISE OPTIONS , 2004 .

[5]  Benjamin Van Roy,et al.  The Linear Programming Approach to Approximate Dynamic Programming , 2003, Oper. Res..

[6]  A. Eydeland Energy and Power Risk Management , 2002 .

[7]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[8]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[9]  Martin B. Haugh,et al.  A unified approach to multiple stopping and duality , 2012, Oper. Res. Lett..

[10]  Nicola Secomandi,et al.  The Role of Price Spreads and Reoptimization in the Real Option Management of Commodity Storage Assets , 2012 .

[11]  Christian Bender,et al.  Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.

[12]  Patrick Jaillet,et al.  Valuation of Commodity-Based Swing Options , 2004, Manag. Sci..

[13]  Sunil Kumar,et al.  Decision , Risk & Operations Working Papers Series Approximate and Data-Driven Dynamic Programming for Queueing Networks , 2008 .

[14]  Daniel Adelman,et al.  Dynamic Bid Prices in Revenue Management , 2007, Oper. Res..

[15]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[16]  Fred W. Glover,et al.  Surrogate Constraints , 1968, Oper. Res..

[17]  Nicola Secomandi,et al.  An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation , 2010, Oper. Res..

[18]  Benjamin Van Roy,et al.  An Approximate Dynamic Programming Approach to Network Revenue Management , 2006 .

[19]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[20]  Warren B. Powell,et al.  “Approximate dynamic programming: Solving the curses of dimensionality” by Warren B. Powell , 2007, Wiley Series in Probability and Statistics.

[21]  Alexander Boogert,et al.  Gas Storage Valuation Using a Monte Carlo Method , 2008 .

[22]  Eduardo S. Schwartz,et al.  Short-Term Variations and Long-Term Dynamics in Commodity Prices , 2000 .

[23]  Petter Bjerksund,et al.  Closed form spread option valuation , 2006 .

[24]  Miriam Hodge A radial basis function approach to gas storage valuation , 2013 .

[25]  R. Bellman,et al.  FUNCTIONAL APPROXIMATIONS AND DYNAMIC PROGRAMMING , 1959 .

[26]  Paul Glasserman,et al.  Simulation for American Options: Regression Now or Regression Later? , 2004 .

[27]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[28]  Pietro Veronesi Fixed Income Securities: Valuation, Risk, and Risk Management , 2010 .

[29]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[30]  Sang Bin Lee,et al.  Term Structure Movements and Pricing Interest Rate Contingent Claims , 1986 .

[31]  Huseyin Topaloglu,et al.  On the Approximate Linear Programming Approach for Network Revenue Management Problems , 2014, INFORMS J. Comput..

[32]  David Lamper,et al.  Monte Carlo valuation of American Options , 2004 .

[33]  Derek D. Wang,et al.  Seasonal Energy Storage Operations with Limited Flexibility: The Price-Adjusted Rolling Intrinsic Policy , 2012, Manuf. Serv. Oper. Manag..

[34]  Peng Sun,et al.  Information Relaxations and Duality in Stochastic Dynamic Programs , 2010, Oper. Res..

[35]  Nicola Secomandi,et al.  Optimal Commodity Trading with a Capacitated Storage Asset , 2010, Manag. Sci..

[36]  P. Schweitzer,et al.  Generalized polynomial approximations in Markovian decision processes , 1985 .

[37]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[38]  Jérôme Detemple American-Style Derivatives : Valuation and Computation , 2005 .

[39]  Ehud I. Ronn Real Options and Energy Management: Using Options Methodology to Enhance Capital Budgeting Decisions , 2003 .

[40]  L. Clewlow,et al.  Energy Derivatives: Pricing and Risk Management , 2000 .

[41]  HO THOMASS.Y.,et al.  Term Structure Movements and Pricing Interest Rate Contingent Claims , 2007 .

[42]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[43]  Gonzalo Cortazar,et al.  The valuation of multidimensional American real options using the LSM simulation method , 2008, Comput. Oper. Res..

[44]  Eduardo S. Schwartz,et al.  The Valuation of Commodity Contingent Claims , 1994 .