Suppressed phase segregation for triple-junction perovskite solar cells

[1]  A. Ho-baillie,et al.  Monolithic Perovskite–Perovskite–Silicon Triple-Junction Tandem Solar Cell with an Efficiency of over 20% , 2022, ACS Energy Letters.

[2]  Andrew H. Proppe,et al.  Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells , 2022, Nature Photonics.

[3]  Yanfa Yan,et al.  Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion-Cation Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[4]  C. Grey,et al.  NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites , 2021, Nature Reviews Chemistry.

[5]  Jinsong Huang,et al.  Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability , 2021, Nature Energy.

[6]  V. Zardetto,et al.  16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process , 2020, Nature Communications.

[7]  Jia Zhu,et al.  Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20% , 2020 .

[8]  A. Walsh,et al.  Lattice Compression Increases the Activation Barrier for Phase Segregation in Mixed-Halide Perovskites , 2020, ACS energy letters.

[9]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[10]  M. Johnston,et al.  Revealing the origin of voltage loss in mixed-halide perovskite solar cells , 2020, Energy & Environmental Science.

[11]  G. Cui,et al.  Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells , 2020 .

[12]  Christopher J. Tassone,et al.  Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials , 2020 .

[13]  A. Hagfeldt,et al.  Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics , 2020, Joule.

[14]  Sean P. Dunfield,et al.  Enabling Flexible All-Perovskite Tandem Solar Cells , 2019, Joule.

[15]  Y. Qi,et al.  Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% , 2019, Science.

[16]  Yujing Li,et al.  Stabilizing RbPbBr3 Perovskite Nanocrystals through Cs+ Substitution. , 2019, Chemistry.

[17]  Nakita K. Noel,et al.  Solution-Processed All-Perovskite Multi-Junction Solar Cells , 2019, Proceedings of the 11th International Conference on Hybrid and Organic Photovoltaics.

[18]  M. Kanatzidis,et al.  Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. , 2018, ACS nano.

[19]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[20]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[21]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[22]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[23]  M. Grätzel,et al.  Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR , 2017, Journal of the American Chemical Society.

[24]  Yicheng Zhao,et al.  Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[25]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[26]  Henk J. Bolink,et al.  Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging , 2016 .

[27]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[28]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[29]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[30]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[31]  Nitin P. Padture,et al.  Additive-Modulated Evolution of HC(NH2)2PbI3 Black Polymorph for Mesoscopic Perovskite Solar Cells , 2015 .

[32]  M. Kanatzidis,et al.  The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. , 2015, Accounts of chemical research.

[33]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[34]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[35]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[36]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[37]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[38]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[39]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[40]  David L. King,et al.  Solar cell efficiency tables (Version 60) , 1997 .

[41]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[42]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .