Microstructure refining of aluminum alloys using aluminothermic reaction with ZnO nanoparticles

[1]  D. Gaskell Introduction to the Thermodynamics of Materials , 2017 .

[2]  Pengting Li,et al.  Grain refinement of A356 alloy by Al–Ti–B–C master alloy and its effect on mechanical properties , 2013 .

[3]  N. Ho,et al.  The microstructure and mechanical properties of an Al–CuO in-situ composite produced using friction stir processing , 2013 .

[4]  J. Kajornchaiyakul,et al.  Grain refinement mechanism in an Al–Si–Mg alloy with scandium , 2012 .

[5]  H. Alamdari,et al.  Behavior of Boron in Molten Aluminum and its Grain Refinement Mechanism , 2012, Metallurgical and Materials Transactions A.

[6]  Song Mousheng,et al.  Microstructures and properties of low cycle fatigue of electrolytic A356 alloys , 2011 .

[7]  B. Niroumand,et al.  Mechanism of zinc oxide–aluminum aluminothermic reaction , 2010 .

[8]  B. S. Murty,et al.  Microstructural features of as-cast A356 alloy inoculated with Sr, Sb modifiers and Al–Ti–C grain refiner simultaneously , 2008 .

[9]  K. Das,et al.  Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates , 2007 .

[10]  Chaowalit Limmaneevichitr,et al.  Fading mechanism of grain refinement of aluminum–silicon alloy with Al–Ti–B grain refiners , 2003 .

[11]  D. StJohn,et al.  Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature , 1999 .

[12]  David H. StJohn,et al.  Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm , 1999 .

[13]  Guo-xiong Sun,et al.  Study on in situ reaction-processed Al–Zn/α-Al2O3(p) composites , 1998 .

[14]  S. Panigrahi,et al.  Processing and properties of AlAl2O3 (TiO2) in situ particle composite , 1995 .