A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations
暂无分享,去创建一个
[1] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[2] Nigel P. Weatherill,et al. Efficient three-dimensional grid generation using the Delaunay triangulation , 1992 .
[3] J. Shewchuk,et al. Delaunay refinement mesh generation , 1997 .
[4] Raimund Seidel,et al. On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..
[5] Nigel P. Weatherill,et al. Grid generation by the delaunay triangulation , 1994 .
[6] Tiow Seng Tan,et al. An upper bound for conforming Delaunay triangulations , 1992, SCG '92.
[7] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..
[8] Carol Hazlewood,et al. Approximating constrained tetrahedrizations , 1993, Comput. Aided Geom. Des..
[9] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes ind dimension , 1990, Comb..
[10] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.
[11] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[12] D. T. Lee,et al. Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..
[13] J. Ruppert. Results on triangulation and high quality mesh generation , 1992 .
[14] Gary L. Miller,et al. Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.