Low Voltage Sodium Intercalation in NaxNix/2Ti1-x/2O2 (0.5 ≤ x ≤ 1.0)

[1]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[2]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[3]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[4]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[5]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[6]  Hanxi Yang,et al.  Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries , 2013 .

[7]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[8]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[9]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[10]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[11]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[12]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[13]  G. Rao,et al.  Nano-(V1/2Sb1/2Sn)O4: a high capacity, high rate anode material for Li-ion batteries , 2011 .

[14]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[15]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[16]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[17]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .

[18]  X. Yao,et al.  Spinel Li4Ti5O12 as a reversible anode material down to 0 V , 2008 .

[19]  Y. Shin,et al.  Preparation and structural properties of layer-type oxides NaxNix/2Ti1−x/2O2 (0.60≤x≤1.0) , 2000 .

[20]  D. A. Small,et al.  A Mossbauer effect investigation of the Li-Sn system , 1999 .

[21]  T. Ishihara,et al.  Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide , 1998 .

[22]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  R. Shanmugam,et al.  Na2/3Ni1/3Ti2/3O2: “Bi-Functional” Electrode Materials for Na-Ion Batteries , 2014 .

[25]  J. Yamaki,et al.  Insertion of an Insulating Layer between Cathode and Separator for Improving Storage Characteristics of Li-Ion Batteries , 2012 .

[26]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[27]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[28]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .