Advances and challenges for flexible energy storage and conversion devices and systems

To meet the rapid development of flexible, portable, and wearable electronic devices, extensive efforts have been devoted to develop matchable energy storage and conversion systems as power sources, such as flexible lithium-ion batteries (LIBs), supercapacitors (SCs), solar cells, fuel cells, etc. Particularly, during recent years, exciting works have been done to explore more suitable and effective electrode/electrolyte materials as well as more preferable cell configuration and structural designs to develop flexible power sources with better electrochemical performance for integration into flexible electronics. An overview is given for these remarkable contributions made by the leading scientists in this important and promising research area. Some perspectives for the future and impacts of flexible energy storage and conversion systems are also proposed.

[1]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[2]  Dan Wang,et al.  Fiber-shaped flexible solar cells , 2010 .

[3]  Wenhui Shi,et al.  High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. , 2011, ACS nano.

[4]  Zhike Liu,et al.  Package‐Free Flexible Organic Solar Cells with Graphene top Electrodes , 2013, Advanced materials.

[5]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[6]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[7]  Xin-bo Zhang,et al.  Homogeneous CoO on Graphene for Binder‐Free and Ultralong‐Life Lithium Ion Batteries , 2013 .

[8]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[9]  Wei Wang,et al.  Novel planar-structure electrochemical devices for highly flexible semitransparent power generation/storage sources. , 2013, Nano letters.

[10]  Yu Huang,et al.  Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. , 2013, ACS nano.

[11]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[12]  Tsu-Wei Chou,et al.  State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges , 2012, Advanced materials.

[13]  Jung-Soo Lee,et al.  Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. , 2013, ACS nano.

[14]  Pedro P. Irazoqui,et al.  Graphitic Petal Electrodes for All‐Solid‐State Flexible Supercapacitors , 2014 .

[15]  Xin-bo Zhang,et al.  Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. , 2013, Angewandte Chemie.

[16]  Jun Chen,et al.  Carbon nanotube network modified carbon fibre paper for Li-ion batteries , 2009 .

[17]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[18]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[19]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[20]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[21]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[22]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[23]  Carter S. Haines,et al.  Biscrolling Nanotube Sheets and Functional Guests into Yarns , 2011, Science.

[24]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[25]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[26]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[27]  Xueping Gao,et al.  Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. , 2010, Angewandte Chemie.

[28]  Bin Liu,et al.  Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes. , 2013, Chemistry.

[29]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[30]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[31]  Liang Li,et al.  N‐Doped Graphene‐SnO2 Sandwich Paper for High‐Performance Lithium‐Ion Batteries , 2012 .

[32]  Jian Chang,et al.  Coaxial fiber supercapacitor using all-carbon material electrodes. , 2013, ACS nano.

[33]  Xin-bo Zhang,et al.  Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage , 2012 .

[34]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[35]  Chun Li,et al.  High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide , 2011 .

[36]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[37]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[38]  John A Rogers,et al.  Imprintable, Bendable, and Shape‐Conformable Polymer Electrolytes for Versatile‐Shaped Lithium‐Ion Batteries , 2013, Advanced materials.

[39]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[40]  Michel Armand,et al.  The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , 2004, Nature materials.

[41]  Xinyuan Xia,et al.  Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. , 2011, Nano letters.

[42]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[43]  Dan Li,et al.  Direct electro-deposition of graphene from aqueous suspensions. , 2011, Physical chemistry chemical physics : PCCP.

[44]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[45]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[46]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[47]  Bruce Dunn,et al.  Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. , 2013, Accounts of chemical research.

[48]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[49]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[50]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[51]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[52]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[53]  Y. Cohen,et al.  Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity , 2013, Science.

[54]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[55]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[56]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[57]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[58]  Jie Lian,et al.  Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials , 2013 .

[59]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[60]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[61]  Dan Xu,et al.  Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. , 2014, Chemical Society reviews.

[62]  Y. Bando,et al.  Cable‐Type Supercapacitors of Three‐Dimensional Cotton Thread Based Multi‐Grade Nanostructures for Wearable Energy Storage , 2013, Advanced materials.

[63]  Feng Yu,et al.  Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays , 2012, Journal of Solid State Electrochemistry.

[64]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[65]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[66]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[67]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[68]  Xin-bo Zhang,et al.  Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage , 2012 .

[69]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[70]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[71]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[72]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[73]  Xin Cai,et al.  Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage , 2012, Advanced materials.

[74]  W. Zhong,et al.  A Gum‐Like Electrolyte: Safety of a Solid, Performance of a Liquid , 2013 .

[75]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[76]  Xin Cai,et al.  Integrated power fiber for energy conversion and storage , 2013 .

[77]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[78]  Martin Winter,et al.  What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev. 2003, 104, 4245−4269. Published on the Web 09/28/2004.) , 2005 .

[79]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[80]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[81]  M. Grätzel Dye-sensitized solar cells , 2003 .

[82]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[83]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[84]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[85]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[86]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[87]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[88]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[89]  Xiaodong Chen,et al.  Ambient Fabrication of Large‐Area Graphene Films via a Synchronous Reduction and Assembly Strategy , 2013, Advanced materials.

[90]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[91]  Dan Xu,et al.  Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries , 2013, Nature Communications.

[92]  Tetsuya Osaka,et al.  Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate , 2009 .

[93]  H. Dai,et al.  Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. , 2010, Journal of the American Chemical Society.

[94]  Yuhai Hu,et al.  Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries , 2013 .

[95]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[96]  Zhong Lin Wang,et al.  A paper-based nanogenerator as a power source and active sensor , 2013 .

[97]  Zhixiang Wei,et al.  Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors , 2013, Advanced materials.

[98]  Xin-bo Zhang,et al.  Graphene Oxide Gel‐Derived, Free‐Standing, Hierarchically Porous Carbon for High‐Capacity and High‐Rate Rechargeable Li‐O2 Batteries , 2012 .

[99]  Dan Xu,et al.  A stable sulfone based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[100]  Aifang Yu,et al.  An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip , 2011 .

[101]  Eleanor I. Gillette,et al.  Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage , 2013 .

[102]  Jong-Hyun Ahn,et al.  Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. , 2012, ChemSusChem.

[103]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[104]  Yuhai Hu,et al.  Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage , 2012 .

[105]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[106]  Xiaohong Liu,et al.  Flexible graphene/MnO2 composite papers for supercapacitor electrodes , 2011 .

[107]  Keun-Ho Choi,et al.  Thin, Deformable, and Safety‐Reinforced Plastic Crystal Polymer Electrolytes for High‐Performance Flexible Lithium‐Ion Batteries , 2014 .

[108]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[109]  Nam-Gyu Park,et al.  Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. , 2010, Chemical communications.

[110]  Wei Lv,et al.  Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium‐Ion Batteries and Dye‐Sensitized Solar Cells , 2011 .

[111]  Changhui Zhao,et al.  Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics. , 2013, Nanoscale.

[112]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[113]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[114]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[115]  Bruno Scrosati,et al.  A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning , 2011 .

[116]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[117]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[118]  Dan Xu,et al.  Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. , 2012, Chemical communications.

[119]  Sally M. Benson,et al.  On the importance of reducing the energetic and material demands of electrical energy storage , 2013 .

[120]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[121]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[122]  Lifeng Zhang,et al.  Flexible Nano‐felts of Carbide‐Derived Carbon with Ultra‐high Power Handling Capability , 2011 .

[123]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[124]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[125]  Xin-bo Zhang,et al.  Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries , 2012 .

[126]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[127]  Huisheng Peng,et al.  Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber , 2013, Advanced materials.

[128]  Guangmin Zhou,et al.  Graphene-Wrapped Fe(3)O(4) Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries , 2010 .

[129]  Xin-bo Zhang,et al.  Tailored Aromatic Carbonyl Derivative Polyimides for High‐Power and Long‐Cycle Sodium‐Organic Batteries , 2014 .

[130]  Ping Xu,et al.  Carbon Nanotube Fiber Based Stretchable Wire‐Shaped Supercapacitors , 2014 .

[131]  Xin-bo Zhang,et al.  Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries , 2012 .

[132]  Fei Zhao,et al.  Super‐Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries , 2013 .

[133]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[134]  Jeremy Barker,et al.  Cathode materials for lithium rocking chair batteries , 1996 .

[135]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[136]  Zhiqiang Niu,et al.  All‐Solid‐State Flexible Ultrathin Micro‐Supercapacitors Based on Graphene , 2013, Advanced materials.

[137]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[138]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[139]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[140]  Xin Li,et al.  Dynamic and galvanic stability of stretchable supercapacitors. , 2012, Nano letters.

[141]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[142]  C. Sow,et al.  α‐Fe2O3 Nanoflakes as an Anode Material for Li‐Ion Batteries , 2007 .

[143]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[144]  Peng Wang,et al.  Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. , 2003, Journal of the American Chemical Society.

[145]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[146]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[147]  Xin-bo Zhang,et al.  Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu(0.95)V2O5 nanoribbons: high capacity cathode material for rechargeable Li-ion batteries. , 2011, Chemical communications.

[148]  G. Graff,et al.  Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. , 2010, ACS nano.

[149]  Xin-bo Zhang,et al.  General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance , 2012, Scientific Reports.

[150]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[151]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[152]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[153]  A. Heller,et al.  α-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries , 2011 .

[154]  Synthesis and electrochemical properties of LiFePO4/C composite cathode material prepared by a new route using supercritical carbon dioxide as a solvent , 2011 .

[155]  Chao Gao,et al.  Highly Electrically Conductive Ag‐Doped Graphene Fibers as Stretchable Conductors , 2013, Advanced materials.

[156]  Shoushan Fan,et al.  Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications , 2011, Advanced materials.

[157]  Haoshen Zhou,et al.  Enhancing the performances of Li-ion batteries by carbon-coating: present and future. , 2012, Chemical communications.

[158]  Chen Chen,et al.  Twisting Carbon Nanotube Fibers for Both Wire‐Shaped Micro‐Supercapacitor and Micro‐Battery , 2013, Advanced materials.

[159]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[160]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[161]  Xingzhong Zhao,et al.  Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol , 2011 .

[162]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[163]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[164]  Chao Zhong,et al.  Flexible free-standing graphene-silicon composite film for lithium-ion batteries , 2010 .

[165]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[166]  Xin-bo Zhang,et al.  Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. , 2013, ChemSusChem.

[167]  Shoushan Fan,et al.  Binder‐Free LiCoO2/Carbon Nanotube Cathodes for High‐Performance Lithium Ion Batteries , 2012, Advanced materials.

[168]  Li‐Zhen Fan,et al.  Composite effects in poly(ethylene oxide)–succinonitrile based all-solid electrolytes , 2006 .

[169]  G. Shi,et al.  Self-assembled graphene hydrogel via a one-step hydrothermal process. , 2010, ACS nano.

[170]  Hal-Bon Gu,et al.  Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery , 2008 .

[171]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[172]  Li Zhang,et al.  Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability , 2011 .

[173]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[174]  Qiang Zhang,et al.  High-performance flexible lithium-ion electrodes based on robust network architecture , 2012 .

[175]  Baohua Li,et al.  Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices , 2013 .

[176]  Min Gyu Kim,et al.  Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries , 2010 .

[177]  Hui-Ming Cheng,et al.  Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage , 2014 .

[178]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[179]  V. Presser,et al.  High power supercapacitor electrodes based on flexible TiC-CDC nano-felts , 2012 .

[180]  B. Koo,et al.  Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls , 2010 .

[181]  Keun-Ho Choi,et al.  Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries , 2013 .

[182]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[183]  Wei Wang,et al.  Transparent, Double‐Sided, ITO‐Free, Flexible Dye‐Sensitized Solar Cells Based on Metal Wire/ZnO Nanowire Arrays , 2012 .

[184]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[185]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[186]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[187]  Zhian Zhang,et al.  Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage , 2011 .

[188]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[189]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[190]  A. J. Frank,et al.  Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. , 2010, Nano letters.

[191]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[192]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[193]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[194]  Gunchul Shin,et al.  Fabrication of a stretchable solid-state micro-supercapacitor array. , 2013, ACS nano.

[195]  Lan Jiang,et al.  Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers , 2012, Advanced materials.

[196]  Sang-Young Lee,et al.  Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries , 2013 .

[197]  R. Li,et al.  Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries , 2013 .

[198]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[199]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[200]  G. Shi,et al.  A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. , 2013, Chemical communications.

[201]  Shuhong Yu,et al.  Flexible graphene–polyaniline composite paper for high-performance supercapacitor , 2013 .

[202]  Hyo-Jeong Ha,et al.  UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries , 2012 .

[203]  Changwen Hu,et al.  Fe3O4–Graphene Nanocomposites with Improved Lithium Storage and Magnetism Properties , 2011 .

[204]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[205]  H. Cui,et al.  Flexible transparent and free-standing silicon nanowires paper. , 2013, Nano letters.

[206]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[207]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[208]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[209]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[210]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[211]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[212]  Gordon G Wallace,et al.  Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices , 2013, Nature Communications.

[213]  Xin-bo Zhang,et al.  High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. , 2012, Chemical communications.

[214]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[215]  C. Sow,et al.  Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries , 2012 .

[216]  J. Tu,et al.  Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material , 2011 .

[217]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[218]  Dong-Hwa Seo,et al.  Flexible energy storage devices based on graphene paper , 2011 .

[219]  Hongwei Wu,et al.  Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters , 2011 .

[220]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[221]  Xin-bo Zhang,et al.  Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells , 2012 .

[222]  Bingqing Wei,et al.  A perspective: carbon nanotube macro-films for energy storage , 2013 .

[223]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[224]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[225]  Heon-Cheol Shin,et al.  Cable‐Type Flexible Lithium Ion Battery Based on Hollow Multi‐Helix Electrodes , 2012, Advanced materials.

[226]  V. Battaglia,et al.  Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. , 2011, Physical chemistry chemical physics : PCCP.

[227]  Hyo-Jeong Ha,et al.  Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries , 2013 .

[228]  Jingguang G. Chen,et al.  Nanostructured electrodes for high-performance pseudocapacitors. , 2013, Angewandte Chemie.

[229]  Claudio Gerbaldi,et al.  Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent m , 2011 .

[230]  Yun Suk Huh,et al.  High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. , 2012, Nanoscale.

[231]  Y. Gogotsi,et al.  Capacitive energy storage in nanostructured carbon-electrolyte systems. , 2013, Accounts of chemical research.

[232]  Hui-Ming Cheng,et al.  A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries , 2012 .

[233]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[234]  Soon Ho Chang,et al.  Symmetric redox supercapacitor with conducting polyaniline electrodes , 2002 .

[235]  Response to “Comment on Late Mousterian Persistence near the Arctic Circle” , 2012, Science.

[236]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[237]  G. Yin,et al.  Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. , 2011, Inorganic chemistry.

[238]  Hubert A. Gasteiger,et al.  Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. , 2011, Journal of the American Chemical Society.

[239]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[240]  Menghe Miao,et al.  High‐Performance Two‐Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays , 2013, Advanced materials.

[241]  Claudio Gerbaldi,et al.  UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries , 2010 .

[242]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[243]  Wei Zhou,et al.  True solutions of single-walled carbon nanotubes for assembly into macroscopic materials , 2009, Nature Nanotechnology.

[244]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[245]  A. Kuwabara,et al.  Impact of lithium-ion ordering on surface electronic states of Li(x)CoO2. , 2013, Physical review letters.

[246]  Feng Li,et al.  TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. , 2013, Nanoscale.

[247]  A. J. Bhattacharyya,et al.  Study of ion transport in lithium perchlorate-succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ cryo-crystallography. , 2009, The journal of physical chemistry. B.

[248]  Shangfeng Yang,et al.  High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes , 2013 .

[249]  Hyo-Jeong Ha,et al.  A facile approach to fabricate self-standing gel-polymer electrolytes for flexible lithium-ion batteries by exploitation of UV-cured trivalent/monovalent acrylate polymer matrices , 2011 .