Mathematical reformulation of the Kolmogorov–Richardson energy cascade in terms of vortex stretching

In this paper, with the aid of direct numerical simulations (DNS) of forced turbulence in a periodic domain, we mathematically reformulate the Kolmogorov-Richardson energy cascade in terms of vortex stretching. By using the description, we prove that if the Navier-Stokes flow satisfies a new regularity criterion in terms of the enstrophy production rate, then the flow does not blow up. Our DNS results seem to support this regularity criterion. Next, we mathematically construct the hierarchy of tubular vortices, which is statistically self-similar in the inertial range. Under the assumptions of the scale-locally of the vortex stretching/compressing (i.e. energy cascade) process and the statistical independence between vortices that are not directly stretched or compressed, we can derive the −5/3 power law of the energy spectrum of statistically stationary turbulence without directly using the Kolmogorov hypotheses.

[1]  The Littlewood–Paley Spectrum in Two-Dimensional Turbulence , 1997 .

[2]  S. Goto,et al.  Generation mechanism of a hierarchy of vortices in a turbulent boundary layer , 2019, Journal of Fluid Mechanics.

[3]  I. M. O T A K I S The mixing transition in turbulent flows , 2022 .

[4]  Y. Kaneda,et al.  Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation , 2009 .

[5]  S. Kida,et al.  Triad interactions in a forced turbulence , 1992 .

[6]  T. Yoneda,et al.  Vortex stretching and enhanced dissipation for the incompressible 3D Navier–Stokes equations , 2020, Mathematische Annalen.

[7]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[8]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[9]  Victor Montagud-Camps Turbulence , 2019, Turbulent Heating and Anisotropy in the Solar Wind.

[10]  T. Yoneda,et al.  Long-time Solvability of the Navier–Stokes Equations in a Rotating Frame with Spatially Almost Periodic Large Data , 2011 .

[11]  John Christos Vassilicos,et al.  Local equilibrium hypothesis and Taylor’s dissipation law , 2016 .

[12]  A. Babin,et al.  Global regularity of 3D rotating Navier-Stokes equations for resonant domains , 2000, Appl. Math. Lett..

[13]  S. Goto,et al.  Hierarchy of coherent structures and real-space energy transfer in turbulent channel flow , 2021, Journal of Fluid Mechanics.

[14]  T. von Karman,et al.  On the Statistical Theory of Turbulence. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Yoneda On the functional-differential equation of advanced type f′(x)=af(2x) with f(0)=0 , 2006 .

[16]  Tsuyoshi Yoneda,et al.  Self-similar hierarchy of coherent tubular vortices in turbulence , 2021, Philosophical Transactions of the Royal Society A.

[17]  W. Volk Evaluation of the solution of an integral-functional equation , 2005 .

[18]  U. Frisch From global scaling, à la Kolmogorov, to local multifractal scaling in fully developed turbulence , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  Nobu Kishimoto,et al.  Global solvability of the rotating Navier-Stokes equations with fractional Laplacian in a periodic domain , 2017, 1702.07443.

[20]  G. S. Patterson,et al.  Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence , 1972 .

[21]  J. Christos Vassilicos,et al.  Dissipation in Turbulent Flows , 2015 .

[22]  G. Kawahara,et al.  Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers , 2017 .

[23]  M. Brenner,et al.  Turbulence generation through an iterative cascade of the elliptical instability , 2019, Science Advances.

[24]  Resonant interaction of Rossby waves in two-dimensional flow on a β plane , 2012 .

[25]  Susumu Goto,et al.  A physical mechanism of the energy cascade in homogeneous isotropic turbulence , 2008, Journal of Fluid Mechanics.