Integrated cross-study datasets of genetic dependencies in cancer

[1]  Andrew R. Leach,et al.  Drug mechanism‐of‐action discovery through the integration of pharmacological and CRISPR screens , 2020, bioRxiv.

[2]  Leopold Parts,et al.  Minimized double guide RNA libraries enable scale-limited CRISPR/Cas9 screens , 2019, bioRxiv.

[3]  Leopold Parts,et al.  Minimal genome-wide human CRISPR-Cas9 library , 2019, bioRxiv.

[4]  Aviad Tsherniak,et al.  Extracting Biological Insights from the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell Lines , 2019, bioRxiv.

[5]  T. Shlomi,et al.  Inferring cancer dependencies on metabolic genes from large-scale genetic screens , 2019, BMC biology.

[6]  Joshua M. Dempster,et al.  Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets , 2019, Nature Communications.

[7]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[8]  Luke A. Gilbert,et al.  Lethal clues to cancer-cell vulnerability , 2019, Nature.

[9]  Fengtang Yang,et al.  Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening , 2019, bioRxiv.

[10]  Emanuel J. V. Gonçalves,et al.  Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects , 2019, Genome Biology.

[11]  Howard Lightfoot,et al.  Cell Model Passports—a hub for clinical, genetic and functional datasets of preclinical cancer models , 2018, Nucleic Acids Res..

[12]  M. Garnett,et al.  JACKS: joint analysis of CRISPR/Cas9 knockout screens , 2018, bioRxiv.

[13]  A. Butler,et al.  Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting , 2017, bioRxiv.

[14]  Thawfeek M. Varusai,et al.  The Reactome Pathway Knowledgebase , 2017, Nucleic acids research.

[15]  G. Traver Hart,et al.  PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens , 2017, Nucleic Acids Res..

[16]  Antoine de Weck,et al.  Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening , 2017, Cell.

[17]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[18]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[19]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens , 2017, G3: Genes, Genomes, Genetics.

[20]  Moriah H Nissan,et al.  OncoKB: A Precision Oncology Knowledge Base. , 2017, JCO precision oncology.

[21]  Keith Lawson,et al.  Evaluation and Design of Genome-wide CRISPR/Cas9 Knockout Screens , 2017, bioRxiv.

[22]  Alessandro Vullo,et al.  Ensembl 2017 , 2016, Nucleic Acids Res..

[23]  Hans Clevers,et al.  Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors , 2016, Nature Medicine.

[24]  Jan Winter,et al.  GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens , 2016, Nucleic Acids Res..

[25]  Julio Saez-Rodriguez,et al.  A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia , 2016, Cell reports.

[26]  Vinay Prasad,et al.  Perspective: The precision-oncology illusion , 2016, Nature.

[27]  T. Golub,et al.  Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. , 2016, Cancer discovery.

[28]  Emanuel J. V. Gonçalves,et al.  A Landscape of Pharmacogenomic Interactions in Cancer , 2016, Cell.

[29]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[30]  J. Kinney,et al.  Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains , 2015, Nature Biotechnology.

[31]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[32]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[33]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[34]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[35]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[36]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[37]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[38]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[39]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[40]  S. Brunak,et al.  A scored human protein–protein interaction network to catalyze genomic interpretation , 2017, Nature Methods.

[41]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR / SpCas 9 Knockout Screens , 2017 .

[42]  J. Leek Surrogate variable analysis , 2007 .