Randomized benchmarking in measurement-based quantum computing

Randomized benchmarking is routinely used as an efficient method for characterizing the performance of sets of elementary logic gates in small quantum devices. In the measurement-based model of quantum computation, logic gates are implemented via single-site measurements on a fixed universal resource state. Here we adapt the randomized benchmarking protocol for a single qubit to a linear cluster state computation, which provides partial, yet efficient characterization of the noise associated with the target gate set. Applying randomized benchmarking to measurement-based quantum computation exhibits an interesting interplay between the inherent randomness associated with logic gates in the measurement-based model and the random gate sequences used in benchmarking. We consider two different approaches: the first makes use of the standard single-qubit Clifford group, while the second uses recently introduced (non-Clifford) measurement-based 2-designs, which harness inherent randomness to implement gate sequences.

[1]  Peter van Loock,et al.  Near-deterministic creation of universal cluster states with probabilistic Bell measurements and three-qubit resource states , 2014, 1410.3753.

[2]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[3]  Terry Rudolph,et al.  Proposal for pulsed on-demand sources of photonic cluster state strings. , 2009, Physical review letters.

[4]  Debbie W. Leung,et al.  Bosonic quantum codes for amplitude damping , 1997 .

[5]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[6]  Akimasa Miyake,et al.  Quantum computation on the edge of a symmetry-protected topological order. , 2010, Physical review letters.

[7]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[8]  Michael J. Biercuk,et al.  Effect of noise correlations on randomized benchmarking , 2015, 1504.05307.

[9]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[10]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[11]  Richard Kueng,et al.  Qubit stabilizer states are complex projective 3-designs , 2015, ArXiv.

[12]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[13]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[14]  Salman Beigi,et al.  Simplified instantaneous non-local quantum computation with applications to position-based cryptography , 2011, 1101.1065.

[15]  Stephen D. Bartlett,et al.  Symmetry protection of measurement-based quantum computation in ground states , 2012, 1207.4805.

[16]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[17]  Debbie W. Leung,et al.  Simple proof of fault tolerance in the graph-state model (6 pages) , 2006 .

[18]  Zak Webb,et al.  The Clifford group forms a unitary 3-design , 2015, Quantum Inf. Comput..

[19]  Damian Markham,et al.  Derandomizing Quantum Circuits with Measurement-Based Unitary Designs. , 2015, Physical review letters.

[20]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[21]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[22]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[23]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[24]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[25]  A. Miyake,et al.  Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. , 2008, Physical review letters.

[26]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[27]  Andrew S. Darmawan,et al.  Optical spin-1 chain and its use as a quantum-computational wire , 2010, 1004.3626.

[28]  Christopher Ferrie,et al.  Accelerated randomized benchmarking , 2014, 1404.5275.

[29]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[30]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[31]  M. Veldhorst,et al.  Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.

[32]  B. Zeng,et al.  Optical one-way quantum computing with a simulated valence-bond solid , 2010, 1004.3624.

[33]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[34]  Stephen D Bartlett,et al.  Symmetry-protected phases for measurement-based quantum computation. , 2012, Physical review letters.

[35]  Arnaud Carignan-Dugas,et al.  Characterizing universal gate sets via dihedral benchmarking , 2015, 1508.06312.

[36]  M. Nielsen,et al.  Noise thresholds for optical quantum computers. , 2005, Physical review letters.

[37]  Robert RAUßENDORF MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES , 2009 .

[38]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[39]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[40]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[41]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[42]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[43]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[44]  F. K. Wilhelm,et al.  Complete randomized benchmarking protocol accounting for leakage errors , 2015, 1505.00580.

[45]  Joseph M Renes,et al.  Quantum computational renormalization in the Haldane phase. , 2010, Physical review letters.

[46]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.