L2-time regularity of BSDEs with irregular terminal functions

We study the -time regularity of the Z-component of a Markovian BSDE, whose terminal condition is a function g of a forward SDE (Xt)0

[1]  MA BYJIN,et al.  REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS , 2002 .

[2]  Céline Labart,et al.  Solving BSDE with Adaptive Control Variate , 2010, SIAM J. Numer. Anal..

[3]  Emmanuel Gobet,et al.  Numerical simulation of BSDEs using empirical regression methods: theory and practice , 2005 .

[4]  G. Guatteri,et al.  Weak existence and uniqueness for forward–backward SDEs , 2006 .

[5]  Christel Geiss,et al.  On approximation of a class of stochastic integrals and interpolation , 2004 .

[6]  G. Pagès,et al.  Error analysis of the optimal quantization algorithm for obstacle problems , 2003 .

[7]  E. Gobet Sensitivity analysis using Itô-Malliavin calculus and application to stochastic optimal control , 2002 .

[8]  Emmanuel Gobet,et al.  Discrete time hedging errors for options with irregular payoffs , 2001, Finance Stochastics.

[9]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[10]  Bernard Delyon,et al.  Lp solutions of backward stochastic differential equations , 2003 .

[11]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[12]  Stefan Geiss,et al.  Interpolation and approximation in L2(gamma) , 2007, J. Approx. Theory.

[13]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[14]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[15]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[16]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[17]  E. Gobet SENSITIVITY ANALYSIS USING ITÔ – MALLIAVIN CALCULUS AND , 2002 .

[18]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[19]  Rémi Munos,et al.  Sensitivity Analysis Using It[o-circumflex]--Malliavin Calculus and Martingales, and Application to Stochastic Optimal Control , 2005, SIAM J. Control. Optim..

[20]  É. Pardoux Backward Stochastic Differential Equations and Viscosity Solutions of Systems of Semilinear Parabolic and Elliptic PDEs of Second Order , 1998 .