The effects of unsymmetric matrix permutations and scalings in semiconductor device and circuit simulation

The solution of large sparse unsymmetric linear systems is a critical and challenging component of semiconductor device and circuit simulations. The time for a simulation is often dominated by this part. The sparse solver is expected to balance different, and often conflicting requirements. Reliability, a low memory-footprint, and a short solution time are a few of these demands. Currently, no black-box solver exists that can satisfy all criteria. The linear systems from both simulations can be highly ill-conditioned and are, therefore, quite challenging for direct and iterative methods. In this paper, it is shown that algorithms to place large entries on the diagonal using unsymmetric permutations and scalings greatly enhance the reliability of both direct and preconditioned iterative solvers for unsymmetric linear systems arising in semiconductor device and circuit simulations. The numerical experiments indicate that the overall solution strategy is both reliable and cost effective.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  W. Joubert,et al.  Numerical experiments with parallel orderings for ILU preconditioners. , 1999 .

[3]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[4]  Michele Benzi,et al.  Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..

[5]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[6]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[7]  Anshul Gupta,et al.  Improved Symbolic and Numerical Factorization Algorithms for Unsymmetric Sparse Matrices , 2002, SIAM J. Matrix Anal. Appl..

[8]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[9]  James Demmel,et al.  A Scalable Sparse Direct Solver Using Static Pivoting , 1999, PPSC.

[10]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[11]  Roger Grimes,et al.  The influence of relaxed supernode partitions on the multifrontal method , 1989, TOMS.

[12]  Anshul Gupta,et al.  Recent advances in direct methods for solving unsymmetric sparse systems of linear equations , 2002, TOMS.

[13]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[14]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[15]  A. Neumaier,et al.  A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .

[16]  Patrick R. Amestoy,et al.  Analysis and comparison of two general sparse solvers for distributed memory computers , 2001, TOMS.

[17]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[18]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[19]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[20]  Gernot Heiser,et al.  Three-dimensional numerical semiconductor device simulation: algorithms, architectures, results , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[22]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[23]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[24]  Wolfgang Fichtner,et al.  PILS: an iterative linear solver package for ill-conditioned systems , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[25]  Gerard L. G. Sleijpen,et al.  Further Improvements in Nonsymmetric Hybrid Iterative Methods , 1993 .

[26]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[27]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[28]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..