SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop

Abstract SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3.0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability. Program summary Program title: SecDec 3.0 Catalogue identifier: AEIR_v3_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIR_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 123828 No. of bytes in distributed program, including test data, etc.: 1651026 Distribution format: tar.gz Programming language: Wolfram Mathematica, perl, Fortran/C++. Computer: From a single PC to a cluster, depending on the problem. Operating system: Unix, Linux. RAM: Depending on the complexity of the problem Classification: 4.4, 5, 11.1. Catalogue identifier of previous version: AEIR_v2_1 Journal reference of previous version: Comput. Phys. Comm. 184(2013)2552 Does the new version supersede the previous version?: Yes Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g. kinematic thresholds). Solution method: Algebraic extraction of singularities within dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter, where the coefficients are finite integrals over the unit-hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. Reasons for new version: • Improved user interface. • Additional new decomposition strategies. • Usage on a cluster is much improved. • Speed-up in numerical evaluation times. • Various new features (please see below). Summary of revisions: • Implementation of two new decompositions strategies based on a geometric algorithm. • Scans over large ranges of parameters are facilitated. • Linear propagators can be treated. • Propagators with negative indices are possible. • Interface to reduction programs like Reduze, Fire, LiteRed facilitated. • Option to use numerical integrator from Mathematica. • Using CQUAD for 1-dimensional integrals to improve speed of numerical evaluations. • Option to include epsilon-dependent dummy functions. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. Running time: Between a few seconds and several hours, depending on the complexity of the problem.

[1]  S. Heinemeyer,et al.  FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM , 2000 .

[2]  Gudrun Heinrich,et al.  Sector Decomposition , 2008, 0803.4177.

[3]  S. Heinemeyer,et al.  The masses of the neutral ${\cal CP}$-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level , 1998, hep-ph/9812472.

[4]  T. Binoth,et al.  A numerical evaluation of the scalar hexagon integral in the physical region , 2003 .

[5]  D. Soper Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.

[6]  Vladimir A. Smirnov,et al.  Feynman Integral Calculus , 2006 .

[7]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .

[8]  Tadao Oda Convex bodies and algebraic geometry , 1987 .

[9]  Gudrun Heinrich,et al.  Massive non-planar two-loop four-point integrals with SecDec 2.1 , 2013, Comput. Phys. Commun..

[10]  Achilleas Lazopoulos,et al.  QCD corrections to triboson production , 2007 .

[11]  Bogdan Ichim,et al.  The power of pyramid decomposition in Normaliz , 2012, J. Symb. Comput..

[12]  T. Binoth,et al.  Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .

[13]  D. Soper,et al.  Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.

[14]  Brian Gough,et al.  GNU Scientific Library Reference Manual - Third Edition , 2003 .

[15]  R. Petronzio,et al.  Evolution of parton densities beyond leading order. The non-singlet case , 1980 .

[16]  Asymptotic Freedom , 1996, hep-th/9609099.

[17]  A. von Manteuffel,et al.  Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.

[18]  Gudrun Heinrich,et al.  SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..

[19]  Hoong-Chien Lee The light-cone gauge , 1986 .

[20]  Takahiro Ueda,et al.  A geometric method of sector decomposition , 2009, Comput. Phys. Commun..

[21]  S. Borowka,et al.  Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications , 2014, 1410.7939.

[22]  G. Leibbrandt Light-cone gauge in Yang-Mills theory , 1984 .

[23]  Charalampos Anastasiou,et al.  Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop , 2007 .

[24]  Thomas Hahn Cuba - a library for multidimensional numerical integration , 2007, Comput. Phys. Commun..

[25]  S. Heinemeyer,et al.  Towards high-precision predictions for the MSSM Higgs sector , 2002, hep-ph/0212020.

[26]  Gudrun Heinrich,et al.  Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..

[27]  V. A. Smirnov,et al.  Hepp and Speer sectors within modern strategies of sector decomposition , 2008, 0812.4700.

[28]  Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.

[29]  J. Frenkel,et al.  Asymptotic Freedom in the Axial and Coulomb Gauges , 1976 .

[30]  Elise de Doncker,et al.  Numerical computation of two-loop box diagrams with masses , 2011, Comput. Phys. Commun..

[31]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[32]  S. Kawabata,et al.  A new version of the multi-dimensional integration and event generation package BASES/SPRING , 1995 .

[33]  R. Schabinger,et al.  A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.

[34]  H. Rzehak,et al.  FeynHiggs: A program for the calculation of MSSM Higgs-boson observables - Version 2.6.5 , 2009, Comput. Phys. Commun..

[35]  Takahiro Ueda,et al.  Sector decomposition via computational geometry , 2010 .

[36]  C. Schubert,et al.  An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .

[37]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[38]  Stefan Beerli A new method for evaluating two-loop Feynman integrals and its application to Higgs production , 2008 .

[39]  Charalampos Anastasiou,et al.  Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .

[40]  Stefan Weinzierl,et al.  Numerical NLO QCD calculations , 2010, 1010.4187.

[41]  Master integrals for massless three-loop form factors: One-loop and two-loop insertions , 2006, hep-ph/0607185.

[42]  G. Heinrich,et al.  Analytical evaluation of dimensionally regularized massive on-shell double boxes , 2004, hep-ph/0406053.

[43]  S. Mandelstam Light-cone superspace and the ultraviolet finiteness of the N=4 model , 1983 .

[44]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[45]  Thomas Hahn,et al.  Concurrent Cuba , 2014, Comput. Phys. Commun..

[46]  L. Landau On analytic properties of vertex parts in quantum field theory , 1959 .

[47]  Pedro Gonnet,et al.  Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants , 2010, ACM Trans. Math. Softw..

[48]  D. Soper,et al.  Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2008, 0812.3686.

[49]  T. Riemann,et al.  Numerical evaluation of tensor Feynman integrals in Euclidean kinematics , 2010, 1010.1667.

[50]  K. Melnikov,et al.  NLO QCD corrections to the production of ttZ in gluon fusion , 2007, 0709.4044.

[51]  S. Heinemeyer,et al.  The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach , 2007 .

[52]  R. N. Lee Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.

[53]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[54]  S. Heinemeyer,et al.  High-precision predictions for the light CP-even Higgs Boson Mass of the MSSM , 2013, 1312.4937.

[55]  S. Heinemeyer,et al.  High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. , 2014, Physical review letters.

[56]  A. Denner,et al.  High-Energy Approximation of One-Loop Feynman Integrals , 1996 .

[57]  Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[58]  T. Hahn,et al.  FormCalc 7 , 2011 .

[59]  中西 襄 Graph theory and Feynman integrals , 1971 .

[60]  A. V. Smirnov,et al.  FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..

[61]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[62]  E. Panzer On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.

[63]  T. T. Wu,et al.  Expanding Protons: Scattering at High Energies , 1987 .

[64]  Nakanish Graph Theory and Feynman Integrals , 1971 .

[65]  A. V. Smirnov,et al.  FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..