SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop
暂无分享,去创建一个
Gudrun Heinrich | Sophia Borowka | S. P. Jones | M. Kerner | J. Schlenk | T. Zirke | S. Borowka | T. Zirke | G. Heinrich | S. Jones | M. Kerner | J. Schlenk | S. Jones
[1] S. Heinemeyer,et al. FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM , 2000 .
[2] Gudrun Heinrich,et al. Sector Decomposition , 2008, 0803.4177.
[3] S. Heinemeyer,et al. The masses of the neutral ${\cal CP}$-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level , 1998, hep-ph/9812472.
[4] T. Binoth,et al. A numerical evaluation of the scalar hexagon integral in the physical region , 2003 .
[5] D. Soper. Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.
[6] Vladimir A. Smirnov,et al. Feynman Integral Calculus , 2006 .
[7] T. Binoth,et al. An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .
[8] Tadao Oda. Convex bodies and algebraic geometry , 1987 .
[9] Gudrun Heinrich,et al. Massive non-planar two-loop four-point integrals with SecDec 2.1 , 2013, Comput. Phys. Commun..
[10] Achilleas Lazopoulos,et al. QCD corrections to triboson production , 2007 .
[11] Bogdan Ichim,et al. The power of pyramid decomposition in Normaliz , 2012, J. Symb. Comput..
[12] T. Binoth,et al. Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .
[13] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[14] Brian Gough,et al. GNU Scientific Library Reference Manual - Third Edition , 2003 .
[15] R. Petronzio,et al. Evolution of parton densities beyond leading order. The non-singlet case , 1980 .
[16] Asymptotic Freedom , 1996, hep-th/9609099.
[17] A. von Manteuffel,et al. Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.
[18] Gudrun Heinrich,et al. SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..
[19] Hoong-Chien Lee. The light-cone gauge , 1986 .
[20] Takahiro Ueda,et al. A geometric method of sector decomposition , 2009, Comput. Phys. Commun..
[21] S. Borowka,et al. Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications , 2014, 1410.7939.
[22] G. Leibbrandt. Light-cone gauge in Yang-Mills theory , 1984 .
[23] Charalampos Anastasiou,et al. Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop , 2007 .
[24] Thomas Hahn. Cuba - a library for multidimensional numerical integration , 2007, Comput. Phys. Commun..
[25] S. Heinemeyer,et al. Towards high-precision predictions for the MSSM Higgs sector , 2002, hep-ph/0212020.
[26] Gudrun Heinrich,et al. Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..
[27] V. A. Smirnov,et al. Hepp and Speer sectors within modern strategies of sector decomposition , 2008, 0812.4700.
[28] Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.
[29] J. Frenkel,et al. Asymptotic Freedom in the Axial and Coulomb Gauges , 1976 .
[30] Elise de Doncker,et al. Numerical computation of two-loop box diagrams with masses , 2011, Comput. Phys. Commun..
[31] Christian Bogner,et al. Operating system: Unix , 1983 .
[32] S. Kawabata,et al. A new version of the multi-dimensional integration and event generation package BASES/SPRING , 1995 .
[33] R. Schabinger,et al. A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.
[34] H. Rzehak,et al. FeynHiggs: A program for the calculation of MSSM Higgs-boson observables - Version 2.6.5 , 2009, Comput. Phys. Commun..
[35] Takahiro Ueda,et al. Sector decomposition via computational geometry , 2010 .
[36] C. Schubert,et al. An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .
[37] A. V. Smirnov,et al. FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..
[38] Stefan Beerli. A new method for evaluating two-loop Feynman integrals and its application to Higgs production , 2008 .
[39] Charalampos Anastasiou,et al. Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .
[40] Stefan Weinzierl,et al. Numerical NLO QCD calculations , 2010, 1010.4187.
[41] Master integrals for massless three-loop form factors: One-loop and two-loop insertions , 2006, hep-ph/0607185.
[42] G. Heinrich,et al. Analytical evaluation of dimensionally regularized massive on-shell double boxes , 2004, hep-ph/0406053.
[43] S. Mandelstam. Light-cone superspace and the ultraviolet finiteness of the N=4 model , 1983 .
[44] M.Yu. Kalmykov,et al. Massive Feynman diagrams and inverse binomial sums , 2004 .
[45] Thomas Hahn,et al. Concurrent Cuba , 2014, Comput. Phys. Commun..
[46] L. Landau. On analytic properties of vertex parts in quantum field theory , 1959 .
[47] Pedro Gonnet,et al. Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants , 2010, ACM Trans. Math. Softw..
[48] D. Soper,et al. Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2008, 0812.3686.
[49] T. Riemann,et al. Numerical evaluation of tensor Feynman integrals in Euclidean kinematics , 2010, 1010.1667.
[50] K. Melnikov,et al. NLO QCD corrections to the production of ttZ in gluon fusion , 2007, 0709.4044.
[51] S. Heinemeyer,et al. The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach , 2007 .
[52] R. N. Lee. Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.
[53] A. V. Smirnov,et al. Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..
[54] S. Heinemeyer,et al. High-precision predictions for the light CP-even Higgs Boson Mass of the MSSM , 2013, 1312.4937.
[55] S. Heinemeyer,et al. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. , 2014, Physical review letters.
[56] A. Denner,et al. High-Energy Approximation of One-Loop Feynman Integrals , 1996 .
[57] Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.
[58] T. Hahn,et al. FormCalc 7 , 2011 .
[59] 中西 襄. Graph theory and Feynman integrals , 1971 .
[60] A. V. Smirnov,et al. FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..
[61] Klaus Hepp,et al. Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .
[62] E. Panzer. On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.
[63] T. T. Wu,et al. Expanding Protons: Scattering at High Energies , 1987 .
[64] Nakanish. Graph Theory and Feynman Integrals , 1971 .
[65] A. V. Smirnov,et al. FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..