Remaining in Control of the Impact of Schema Evolution in NoSQL Databases

[1]  Peter J. Haas,et al.  The monte carlo database system: Stochastic analysis close to the data , 2011, TODS.

[2]  Apostolos V. Zarras,et al.  Gravitating to rigidity: Patterns of schema evolution - and its absence - in the lives of tables , 2017, Inf. Syst..

[3]  Luiz André Barroso,et al.  The tail at scale , 2013, CACM.

[4]  Dong Qiu,et al.  An empirical analysis of the co-evolution of schema and code in database applications , 2013, ESEC/FSE 2013.

[5]  Meike Klettke,et al.  MigCast: Putting a Price Tag on Data Model Evolution in NoSQL Data Stores , 2019, SIGMOD Conference.

[6]  Christopher Ré,et al.  Probabilistic databases , 2011, SIGA.

[7]  Carlo Curino,et al.  Automating the database schema evolution process , 2012, The VLDB Journal.

[8]  Radu Calinescu,et al.  Evaluating cloud database migration options using workload models , 2018, Journal of Cloud Computing.

[9]  Prashant J. Shenoy,et al.  "Cut me some slack": latency-aware live migration for databases , 2012, EDBT '12.

[10]  Wolfgang Lehner,et al.  Living in Parallel Realities: Co-Existing Schema Versions with a Bidirectional Database Evolution Language , 2017, SIGMOD Conference.

[11]  Elisa Bertino,et al.  Evolving a Set of DTDs According to a Dynamic Set of XML Documents , 2002, EDBT Workshops.

[12]  Anthony Cleve,et al.  Understanding database schema evolution: A case study , 2015, Sci. Comput. Program..

[13]  Peter J. Haas,et al.  Monte Carlo Methods for Uncertain Data , 2018, Encyclopedia of Database Systems.

[14]  Stefanie Scherzinger,et al.  An Empirical Study on the Design and Evolution of NoSQL Database Schemas , 2020, ER.

[15]  Jack Chen,et al.  The MemSQL Query Optimizer: A modern optimizer for real-time analytics in a distributed database , 2016, Proc. VLDB Endow..