Implant Materials and Surfaces to Minimizing Biofilm Formation and Peri-implantitis

[1]  L. Cellini,et al.  Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology , 2020, Journal of Materials Science: Materials in Medicine.

[2]  F. Mastrangelo,et al.  The Effects of Liquid Disinfection and Heat Sterilization Processes on Implant Drill Roughness: Energy Dispersion X-ray Microanalysis and Infrared Thermography , 2020, Journal of clinical medicine.

[3]  A. Piattelli,et al.  Histological Evaluation of Early and Immediately Loaded Implants Retrieved from Human Jaws , 2019, Atlas of Immediate Dental Implant Loading.

[4]  D. Daubert,et al.  Biofilm as a risk factor in implant treatment. , 2019, Periodontology 2000.

[5]  Yimin Zhao,et al.  Three-Dimensionally-Printed Polyether-Ether-Ketone Implant with a Cross-Linked Structure and Acid-Etched Microporous Surface Promotes Integration with Soft Tissue , 2019, International journal of molecular sciences.

[6]  Antonio Scarano,et al.  Scanning Electron Microscopy Analysis and Energy Dispersion X-ray Microanalysis to Evaluate the Effects of Decontamination Chemicals and Heat Sterilization on Implant Surgical Drills: Zirconia vs. Steel , 2019, Applied Sciences.

[7]  F. Tay,et al.  Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilitiess. , 2019, Acta biomaterialia.

[8]  S. Kuehne,et al.  Biofilm formation on polyetheretherketone and titanium surfaces , 2019, Clinical and experimental dental research.

[9]  A. Piattelli,et al.  Implant insertion torque value in immediate loading: A retrospective study , 2019, Medicina oral, patologia oral y cirugia bucal.

[10]  F. Hölzle,et al.  Experimental peri-implant mucositis around titanium and zirconia implants in comparison to a natural tooth: part 1-host-derived immunological parameters. , 2019, International journal of oral and maxillofacial surgery.

[11]  Truc Thi Hoang Nguyen,et al.  General review of titanium toxicity , 2019, International journal of implant dentistry.

[12]  J. Yuan,et al.  Wear and Corrosion Interactions at the Titanium/Zirconia Interface: Dental Implant Application , 2018, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[13]  T. Sulchek,et al.  Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. , 2018, Biomaterials.

[14]  G. Romanos,et al.  Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review , 2018, International journal of molecular sciences.

[15]  G. Huynh-Ba,et al.  Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. , 2018, Journal of clinical periodontology.

[16]  W. Giannobile,et al.  Is Metal Particle Release Associated with Peri-implant Bone Destruction? An Emerging Concept , 2018, Journal of dental research.

[17]  A. Riveiro,et al.  Laser Surface Texturing of Polymers for Biomedical Applications , 2018, Front. Phys..

[18]  L. Chambrone,et al.  Microbiome and Microbial Biofilm Profiles of Peri‐Implantitis: A Systematic Review , 2017, Journal of periodontology.

[19]  M. Behr,et al.  The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants , 2017, International journal of implant dentistry.

[20]  A. Mombelli,et al.  Zirconia dental implants: where are we now, and where are we heading? , 2017, Periodontology 2000.

[21]  W. Palin,et al.  Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors , 2016 .

[22]  Wenjie Zhang,et al.  Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration , 2016, Scientific Reports.

[23]  W. Walsh,et al.  Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model? , 2016, Clinical orthopaedics and related research.

[24]  H. De Bruyn,et al.  "Peri-Implantitis": A Complication of a Foreign Body or a Man-Made "Disease". Facts and Fiction. , 2016, Clinical implant dentistry and related research.

[25]  S. Caputi,et al.  Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study. , 2016, Clinical oral implants research.

[26]  T. Kamarul,et al.  Preparation Methods for Improving PEEK's Bioactivity for Orthopedic and Dental Application: A Review , 2016, International journal of biomaterials.

[27]  L. Papadopoulou,et al.  Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility , 2016, International journal of biomaterials.

[28]  A. Mombelli,et al.  Pro-inflammatory cytokines at zirconia implants and teeth. A cross-sectional assessment , 2016, Clinical Oral Investigations.

[29]  J. Chan,et al.  Corrosion behavior of zirconia in acidulated phosphate fluoride , 2016, Journal of applied oral science : revista FOB.

[30]  Xing Zhang,et al.  Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting , 2015 .

[31]  M. Rosentritt,et al.  Biofilm formation on the surface of modern implant abutment materials. , 2015, Clinical oral implants research.

[32]  O. Addison,et al.  A synergistic effect of albumin and H₂O₂ accelerates corrosion of Ti6Al4V. , 2015, Acta biomaterialia.

[33]  J. Shibli,et al.  Oral Streptococci Biofilm Formation on Different Implant Surface Topographies , 2015, BioMed research international.

[34]  Aleš Iglič,et al.  Wettability studies of topologically distinct titanium surfaces. , 2015, Colloids and surfaces. B, Biointerfaces.

[35]  W. Teughels,et al.  Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review , 2015, Journal of Bio- and Tribo-Corrosion.

[36]  J. Derks,et al.  Peri-implant health and disease. A systematic review of current epidemiology. , 2015, Journal of clinical periodontology.

[37]  M. Mozetič,et al.  Titanium nanostructures for biomedical applications , 2015, Nanotechnology.

[38]  S. J. Baker,et al.  Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity , 2015, International Journal of Oral Science.

[39]  S. Akbar,et al.  Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate , 2014 .

[40]  T. Berglundh,et al.  Composition of Human Peri-implantitis and Periodontitis Lesions , 2014, Journal of dental research.

[41]  A. Piattelli,et al.  Experimental evaluation in rabbits of the effects of thread concavities in bone formation with different titanium implant surfaces. , 2014, Clinical implant dentistry and related research.

[42]  Abraham Marmur,et al.  A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. , 2014, Acta biomaterialia.

[43]  B. Boyan,et al.  A review on the wettability of dental implant surfaces II: Biological and clinical aspects. , 2014, Acta biomaterialia.

[44]  A. Piattelli,et al.  Bacterial Leakage in Morse Cone Internal Connection Implants Using Different Torque Values: An In Vitro Study , 2014, Implant dentistry.

[45]  K. Dearn,et al.  University of Birmingham Strength of poly-ether-ether-ketone : effects of sterilisation and thermal ageing , 2013 .

[46]  T. Chaturvedi Allergy related to dental implant and its clinical significance , 2013, Clinical, cosmetic and investigational dentistry.

[47]  Sivaraj,et al.  Evaluation of implant success: A review of past and present concepts , 2013, Journal of pharmacy & bioallied sciences.

[48]  I. Abrahamsson,et al.  Experimental periodontitis and peri-implantitis in dogs. , 2013, Clinical oral implants research.

[49]  M. Janal,et al.  The Effect of Simplifying Dental Implant Drilling Sequence on Osseointegration: An Experimental Study in Dogs , 2013, International journal of biomaterials.

[50]  D. Edelhoff,et al.  Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. , 2012, Dental materials : official publication of the Academy of Dental Materials.

[51]  T. J. Webster,et al.  Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. , 2012, Acta biomaterialia.

[52]  Sangwon Park,et al.  Allergic contact stomatitis caused by a titanium nitride-coated implant abutment: a clinical report. , 2012, The Journal of prosthetic dentistry.

[53]  Paolo A Netti,et al.  Determinants of cell–material crosstalk at the interface: towards engineering of cell instructive materials , 2012, Journal of The Royal Society Interface.

[54]  A. Piattelli,et al.  Bacterial leakage in implants with different implant-abutment connections: an in vitro study. , 2012, Journal of periodontology.

[55]  D. Dymock,et al.  Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. , 2012, Journal of dentistry.

[56]  M. Wolkewitz,et al.  The effects of cyclic loading and preparation on the fracture strength of zirconium-dioxide implants: an in vitro investigation. , 2011, Clinical oral implants research.

[57]  A. Wennerberg,et al.  In situ analysis of multispecies biofilm formation on customized titanium surfaces. , 2011, Molecular oral microbiology.

[58]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[59]  N. Lang,et al.  Periimplant diseases: where are we now?--Consensus of the Seventh European Workshop on Periodontology. , 2011, Journal of clinical periodontology.

[60]  A R Boccaccini,et al.  Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[61]  J. Jansen,et al.  The influence of nanoscale topographical cues on initial osteoblast morphology and migration. , 2010, European cells & materials.

[62]  Vanni Lughi,et al.  Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. , 2010, Dental materials : official publication of the Academy of Dental Materials.

[63]  N. Lang,et al.  Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. , 2010, Periodontology 2000.

[64]  R. Cabrini,et al.  Reactive lesions of peri-implant mucosa associated with titanium dental implants: a report of 2 cases. , 2010, International journal of oral and maxillofacial surgery.

[65]  F. Schwarz,et al.  In vivo and in vitro biofilm formation on two different titanium implant surfaces. , 2010, Clinical oral implants research.

[66]  W. Bruckard,et al.  A review of factors that affect contact angle and implications for flotation practice. , 2009, Advances in colloid and interface science.

[67]  A. Marmur A Guide to the Equilibrium Contact Angles Maze , 2009 .

[68]  Seiji Ban,et al.  Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. , 2009, Dental materials journal.

[69]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[70]  J. Granjeiro,et al.  Basic research methods and current trends of dental implant surfaces. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[71]  H. Koo,et al.  Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. , 2008, Clinical oral implants research.

[72]  A. Sicilia,et al.  Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. , 2008, Clinical oral implants research.

[73]  N. Lang,et al.  Bacterial colonization immediately after installation on oral titanium implants. , 2007, Clinical oral implants research.

[74]  J. C. Berger,et al.  Surface roughness of denture base acrylic resins after processing and after polishing. , 2006, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[75]  L. Sennerby,et al.  Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. , 2005, Clinical implant dentistry and related research.

[76]  R. Kohal,et al.  Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. , 2004, Journal of periodontology.

[77]  Ann Wennerberg,et al.  Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. , 2004, The International journal of prosthodontics.

[78]  S. Caputi,et al.  Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. , 2004, Journal of periodontology.

[79]  M. Raspanti,et al.  Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants. , 2003, Biomaterials.

[80]  Antonio Carrassi,et al.  Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. , 2002, The International Journal of Oral and Maxillofacial Implants.

[81]  F. Dalard,et al.  Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. , 2002, Biomaterials.

[82]  A Scarano,et al.  Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. , 2000, The International journal of oral & maxillofacial implants.

[83]  S. Steinemann Titanium--the material of choice? , 1998, Periodontology 2000.

[84]  E. Vogler,et al.  Structure and reactivity of water at biomaterial surfaces. , 1998, Advances in colloid and interface science.

[85]  P Lambrechts,et al.  Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. , 1997, Dental materials : official publication of the Academy of Dental Materials.

[86]  G. Dahlén,et al.  Effect of titanium on selected oral bacterial species in vitro. , 1995, European journal of oral sciences.

[87]  M. Quirynen,et al.  An in vivo Study of the Influence of the Surface Roughness of Implants on the Microbiology of Supra- and Subgingival Plaque , 1993, Journal of dental research.

[88]  Håkan Mattsson,et al.  Surface spectroscopic characterization of titanium implant materials , 1990 .

[89]  K. Bundy,et al.  An investigation of the bacteriostatic properties of pure metals. , 1980, Journal of biomedical materials research.

[90]  Muhammad Sohail Zafar,et al.  Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. , 2016, Journal of prosthodontic research.

[91]  G. Strnad,et al.  Contact Angle Measurement on Medical Implant Titanium Based Biomaterials , 2016 .

[92]  S. Verdú,et al.  Exfoliative cytology and titanium dental implants: a pilot study. , 2013, Journal of periodontology.

[93]  T. Attin,et al.  Polyspecies biofilm formation on implant surfaces with different surface characteristics , 2013, Journal of applied oral science : revista FOB.

[94]  R. G. Richards,et al.  Chapter 8 – Bacterial Interactions with Polyaryletheretherketone , 2012 .

[95]  M. Quirynen,et al.  Supra- and Subgingival Plaque An in vivo Study of the Influence of the Surface Roughness of Implants on the Microbiology of , 2011 .

[96]  Antonio Scarano,et al.  Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. , 2006, Journal of periodontology.

[97]  I Lundström,et al.  Physico-chemical considerations of titanium as a biomaterial. , 1992, Clinical materials.