Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^{-6}$ for a companion with angular displacement as small as $4~\lambda/D$ with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or optimized pupil plane phase element alone.

[1]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[2]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[3]  Johanan L. Codona,et al.  Imaging extrasolar planets by stellar halo suppression in separately corrected color bands , 2004 .

[4]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[5]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[6]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[7]  David Mouillet,et al.  Pupil stabilization for SPHERE's extreme AO and high performance coronagraph system. , 2007, Optics express.

[8]  J. Angel,et al.  First On-Sky High-Contrast Imaging with an Apodizing Phase Plate* , 2007, astro-ph/0702324.

[9]  C. Jenkins Optical vortex coronagraphs on ground-based telescopes , 2007, 0709.0153.

[10]  Daniel W. Wilson,et al.  Astronomical demonstration of an optical vortex coronagraph. , 2008 .

[11]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[12]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[13]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[14]  R. Vanderbei,et al.  Optimal pupil apodizations of arbitrary apertures for high-contrast imaging. , 2011, Optics express.

[15]  P. Baudoz,et al.  Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes , 2011, 1104.2903.

[16]  D. Mawet,et al.  Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph. , 2011, Optics letters.

[17]  L. Pueyo,et al.  HIGH-CONTRAST IMAGING WITH AN ARBITRARY APERTURE: ACTIVE COMPENSATION OF APERTURE DISCONTINUITIES , 2012, 1211.6112.

[18]  Grover A. Swartzlander,et al.  Optical vortex coronagraphy with an elliptical aperture. , 2013, Applied optics.

[19]  D. Mawet,et al.  Searching for companions down to 2 AU from β Pictoris using the L′-band AGPM coronagraph on VLT/NACO , 2013, 1311.4298.

[20]  Ravi K. Komanduri,et al.  Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. , 2013, Optics express.

[21]  M. Kenworthy,et al.  FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES , 2013, 1303.0527.

[22]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[23]  D. Mawet,et al.  Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph , 2013, 1304.1180.

[24]  Frans Snik,et al.  Performance characterization of a broadband vector Apodizing Phase Plate coronagraph. , 2014, Optics express.

[25]  Frantz Martinache,et al.  Lyot-based Low Order Wavefront Sensor for Phase-mask Coronagraphs: Principle, Simulations and Laboratory Experiments , 2014, 1404.7201.

[26]  M. Escuti,et al.  Direct-writing of complex liquid crystal patterns. , 2014, Optics express.

[27]  D. Mawet,et al.  Apodized phase mask coronagraphs for arbitrary apertures - II. Comprehensive review of solutions for the vortex coronagraph , 2014, 1404.2845.

[28]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[29]  Pierre Baudoz,et al.  Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique , 2015, 1509.06158.

[30]  Frantz Martinache,et al.  On-sky demonstration of low-order wavefront sensing and control with focal plane phase mask coronagraphs , 2015 .

[31]  Grover A. Swartzlander,et al.  Nodal areas in coherent beams , 2015 .