Probability of Error Analysis for Hidden Markov Model Filtering With Random Packet Loss
暂无分享,去创建一个
Jamie S. Evans | Subhrakanti Dey | Alex S. C. Leong | S. Dey | A. Leong | J. Evans | Alex S. C. Leong
[1] W. Rudin. Principles of mathematical analysis , 1964 .
[2] Peter Seiler,et al. Estimation with lossy measurements: jump estimators for jump systems , 2003, IEEE Trans. Autom. Control..
[3] Valerie Isham,et al. Non‐Negative Matrices and Markov Chains , 1983 .
[4] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[5] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[6] V. Hutson. Integral Equations , 1967, Nature.
[7] W. Wonham. Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .
[8] W. Hackbusch. Integral Equations: Theory and Numerical Treatment , 1995 .
[9] Bruno Sinopoli,et al. Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.
[10] Neri Merhav,et al. Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.
[11] Ofer Zeitouni,et al. Asymptotic filtering for finite state Markov chains , 1996 .
[12] E. Seneta. Non-negative Matrices and Markov Chains , 2008 .
[13] M. A. Wolfe. A first course in numerical analysis , 1972 .
[14] David E. Jeffcoat,et al. Analysis of dynamic sensor coverage problem using Kalman filters for estimation , 2005 .
[15] Brian D. O. Anderson,et al. Exponential stability of filters and smoothers for Hidden Markov Models , 1997, 1997 European Control Conference (ECC).
[16] Brian D. O. Anderson,et al. On state-estimation of a two-state hidden Markov model with quantization , 2001, IEEE Trans. Signal Process..