A gravitational approach to edge detection based on triangular norms

We study the method of Sun et al. for edge detection based on the Law of Universal Gravity. We analyze the effect of the substitution of the product operation by other triangular norms in the calculation of the gravitational forces. We treat edges as fuzzy sets for which membership degrees are extracted from the resulting gravitational force on each pixel. We consider several prototypical triangular norms and experimentally show that their features determine the kind of edges detected. The new method is tested on the Berkeley Segmentation Dataset, showing to be competitive compared to the Canny method.

[1]  Agnès Desolneux,et al.  Significant edges in the case of a non-stationary Gaussian noise , 2006, math/0606219.

[2]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  A. Baddeley An Error Metric for Binary Images , 1992 .

[5]  James C. Bezdek,et al.  A geometric approach to edge detection , 1998, IEEE Trans. Fuzzy Syst..

[6]  Francisco José Madrid-Cuevas,et al.  Unimodal thresholding for edge detection , 2008, Pattern Recognit..

[7]  Lily R. Liang,et al.  Competitive fuzzy edge detection , 2003, Appl. Soft Comput..

[8]  Miin-Shen Yang,et al.  Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation , 2008, Pattern Recognit. Lett..

[9]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Francisco José Madrid-Cuevas,et al.  On candidates selection for hysteresis thresholds in edge detection , 2009, Pattern Recognit..

[11]  Hamid Krim,et al.  A Shearlet Approach to Edge Analysis and Detection , 2009, IEEE Transactions on Image Processing.

[12]  Edward S. Deutsch,et al.  On the Quantitative Evaluation of Edge Detection Schemes and their Comparison with Human Performance , 1975, IEEE Transactions on Computers.

[13]  Hamid R. Tizhoosh,et al.  Image thresholding using type II fuzzy sets , 2005, Pattern Recognit..

[14]  Pascal Matsakis,et al.  An equivalent definition of the histogram of forces: Theoretical and algorithmic implications , 2010, Pattern Recognit..

[15]  Qiang Liu,et al.  A novel approach for edge detection based on the theory of universal gravity , 2007, Pattern Recognit..

[16]  C. A. Murthy,et al.  Thresholding in edge detection: a statistical approach , 2004, IEEE Transactions on Image Processing.

[17]  Lei Zhang,et al.  Edge detection by scale multiplication in wavelet domain , 2002, Pattern Recognit. Lett..

[18]  Humberto Bustince,et al.  Interval-valued fuzzy sets constructed from matrices: Application to edge detection , 2009, Fuzzy Sets Syst..

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  F. Russo,et al.  Edge extraction by FIRE operators , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[21]  Yitzhak Yitzhaky,et al.  A Method for Objective Edge Detection Evaluation and Detector Parameter Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Cécile Barat,et al.  Scale-adaptive detection and local characterization of edges based on wavelet transform , 2004, Signal Process..

[23]  B. Baets,et al.  The fundamentals of fuzzy mathematical morphology, part 2 : idempotence, convexity and decomposition , 1995 .

[24]  In-So Kweon,et al.  Automatic edge detection using 3 x 3 ideal binary pixel patterns and fuzzy-based edge thresholding , 2004, Pattern Recognit. Lett..

[25]  Jussi Parkkinen,et al.  Edge detection in multispectral images using the self-organizing map , 2003, Pattern Recognit. Lett..

[26]  Jun Shen,et al.  Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement , 2003, Pattern Recognit..

[27]  Ioannis K. Vlachos,et al.  Intuitionistic fuzzy information - Applications to pattern recognition , 2007, Pattern Recognit. Lett..

[28]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[29]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[30]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[31]  Din-Chang Tseng,et al.  A wavelet-based multiresolution edge detection and tracking , 2005, Image Vis. Comput..

[32]  Mitra Basu,et al.  Gaussian-based edge-detection methods - a survey , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[33]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Koen C. Mertens,et al.  A sub‐pixel mapping algorithm based on sub‐pixel/pixel spatial attraction models , 2006 .

[35]  B. Baets,et al.  The fundamentals of fuzzy mathematical morphology, part 1 : basic concepts , 1995 .

[36]  J. Canny Finding Edges and Lines in Images , 1983 .

[37]  Francisco José Madrid-Cuevas,et al.  Solving the process of hysteresis without determining the optimal thresholds , 2010, Pattern Recognit..

[38]  Francisco José Madrid-Cuevas,et al.  Determining Hysteresis Thresholds for Edge Detection by Combining the Advantages and Disadvantages of Thresholding Methods , 2010, IEEE Transactions on Image Processing.

[39]  Francisco José Madrid-Cuevas,et al.  Automatic generation of consensus ground truth for the comparison of edge detection techniques , 2008, Image Vis. Comput..

[40]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[42]  Humberto Bustince,et al.  Construction of fuzzy indices from fuzzy DI-subsethood measures: Application to the global comparison of images , 2007, Inf. Sci..

[43]  I. Newton Philosophiæ naturalis principia mathematica , 1973 .

[44]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .