The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling
暂无分享,去创建一个
[1] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[2] John Eccleston,et al. Statistics and Computing , 2006 .
[3] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[4] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[5] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[6] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[7] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[8] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[9] M. Betancourt,et al. The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.
[10] Chong Wang,et al. Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.
[11] Arnaud Doucet,et al. An Adaptive Subsampling Approach for MCMC Inference in Large Datasets , 2014 .
[12] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[13] M. Betancourt,et al. Optimizing The Integrator Step Size for Hamiltonian Monte Carlo , 2014, 1411.6669.
[14] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[15] K. Zygalakis,et al. (Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics , 2015, 1501.00438.
[16] Yee Whye Teh,et al. Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..