The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling

Leveraging the coherent exploration of Hamiltonian flow, Hamiltonian Monte Carlo produces computationally efficient Monte Carlo estimators, even with respect to complex and high-dimensional target distributions. When confronted with data-intensive applications, however, the algorithm may be too expensive to implement, leaving us to consider the utility of approximations such as data subsampling. In this paper I demonstrate how data subsampling fundamentally compromises the efficient exploration of Hamiltonian flow and hence the scalable performance of Hamiltonian Monte Carlo itself.

[1]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[2]  John Eccleston,et al.  Statistics and Computing , 2006 .

[3]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[4]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[5]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[6]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[7]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[8]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[9]  M. Betancourt,et al.  The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.

[10]  Chong Wang,et al.  Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.

[11]  Arnaud Doucet,et al.  An Adaptive Subsampling Approach for MCMC Inference in Large Datasets , 2014 .

[12]  Tianqi Chen,et al.  Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.

[13]  M. Betancourt,et al.  Optimizing The Integrator Step Size for Hamiltonian Monte Carlo , 2014, 1411.6669.

[14]  Babak Shahbaba,et al.  Split Hamiltonian Monte Carlo , 2011, Stat. Comput..

[15]  K. Zygalakis,et al.  (Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics , 2015, 1501.00438.

[16]  Yee Whye Teh,et al.  Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..