Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4, and SrLaAlO4, and deviations from the oxide additivity rule

Abstract The structures of CaYAlO 4 , CaNdAlO 4 , and SrLaAlO 4 have been refined using single-crystal X-ray diffraction data. These compounds possess the full symmetry of the K 2 NiF 4 structure type, I4 mmm , with lattice parameters a = 3.6451(1) and c = 11.8743(6)A for CaYAlO 4 , a = 3.6847(3) and c = 12.124(2)A for CaNdAlO 4 , and a = 3.7564(1) and c = 12.6357(5)A for SrLaAlO 4 . Inspection of the interatomic distances reveals stretching of the AlO bond, from an average of 1.878 to 1.901 to 1.935 A, as smaller cations (CaY) are replaced by larger cations (CaNd) and (SrLa) in the MM′ sites between the two dimensional aluminate sheets. The dielectric constants (κ′) and dielectric loss values of CaYAlO 4 , CaNdAlO 4 , and SrLaAlO 4 were measured at 1 MHz using a two-terminal method with empirically determined edge corrections. The results are CaYAlO 4 κ′ a = 21.44 ± .02 tan δ a = 0.0008 κ′ c = 16.12 ± .04 tan δ c = 0.0008 CaNdAlO 4 κ′ a = 19.65 ± .1 tan δ a = 0.0002 κ′ c = 17.65 ± .1 tan δ c = 0.0004 SrLaAlO 4 κ′ a = 16.81 ± .1 tan δ a = 0.0006 κ′ c = 20.02 ± .1 tan δ c = 0.0008. The deviations of measured dielectric polarizabilities, as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to α D ( MM ′AlO 4 ) = α D ( M O) + 0.5 α D ( M ′ 2 O 3 ) + 0.5 α D (Al 2 O 3 ), are + 1.7% for CaYAlO 4 , −2.0% for CaNdAlO 4 , and −5.9% for SrLaAlO 4 . The deviations from additivity are believed to result from K 2 NiF 4 structural constraints leading to “rattling” M and M ′ ions in CaYAlO 4 and “compressed” M and M ′ ions in CaNdAlO 4 and SrLaAlO 4 .

[1]  R. D. Shannon,et al.  Dielectric constants of chrysoberyl, spinel, phenacite, and forsterite and the oxide additivity rule , 1989 .

[2]  G. Rossman,et al.  Dielectric constants of silicate garnets and the oxide additivity rule , 1992 .

[3]  Shepard Roberts,et al.  Dielectric Constants and Polarizabilities of Ions in Simple Crystals and Barium Titanate , 1949 .

[4]  J. Fontanella,et al.  Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO , 1974 .

[5]  A. Lasaga,et al.  Electronic and ionic polarizabilities of silicate minerals , 1982 .

[6]  G. Rossman,et al.  Dielectric constants of diaspore and B-, Be-, and P-containing minerals, the polarizabilities of B_2O_3 and P_2O_5, and the oxide additivity rule , 1992 .

[7]  G. Rossman,et al.  Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule , 1991 .

[8]  owski,et al.  CaNdAlO4 perovskite substrate for microwave and far‐infrared applications of epitaxial high Tc superconducting thin films , 1990 .

[9]  R. Bartels,et al.  The Temperature and Pressure Dependence of the Dielectric Constants of CaO and SrO , 1979, April 16.

[10]  Marek Berkowski,et al.  High-T/sub c/ thin films on low microwave loss alkaline-rare-earth-aluminate crystals , 1991 .

[11]  Gerald V. Gibbs,et al.  The Crystal Chemistry of the Silicate Garnets , 1971 .

[12]  W. Westphal,et al.  Dielectric Constant and Loss Data , 1972 .

[13]  R. D. Shannon,et al.  Dielectric constant of Y-stabilized zirconia, the polarizability of zirconia and the oxide additivity rule , 1989 .

[14]  A. Heydweiller Dichte, Dielektrizitätskonstante und Refraktion fester Salze , 1920 .

[15]  B. Chai,et al.  Low‐loss substrate for microwave application of high‐temperature superconductor films , 1990 .

[16]  Fisk,et al.  Large dielectric constants and massive carriers in La2CuO4. , 1989, Physical review letters.

[17]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[18]  R. D. Shannon,et al.  Dielectric constants of BeO, MgO, and CaO using the two-terminal method , 1989 .

[19]  T. H. Allik,et al.  Dielectric constants of yttrium and rare‐earth garnets, the polarizability of gallium oxide, and the oxide additivity rule , 1990 .

[20]  S. Roberts Polarizabilities of Ions in Perovskite-Type Crystals , 1951 .

[21]  C. Y. Chen,et al.  Frequency dependence of the conductivity and dielectric constant of La2CuO4+y near the insulator-metal transition , 1989 .

[22]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[23]  C. K. Cheng XLVI. The dielectric constants of some metallic sulphates containing various amounts of water of crystallization , 1940 .

[24]  S. Roberts A Theory of Dielectric Polarization in Alkali-Halide Crystals , 1950 .