Advances in gamma titanium aluminides and their manufacturing techniques

Abstract Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

[1]  M. Tavoosi,et al.  Synthesis and characterization of Zn/Al2O3 nanocomposite by mechanical alloying , 2008 .

[2]  Yuyong Chen,et al.  Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy , 2009 .

[3]  H. Kestler,et al.  Sheet gamma TiAl: Status and opportunities , 2004 .

[4]  A. Hishinuma,et al.  Deformation twinning in TiAl: Effects of defect clustering , 1997 .

[5]  F. Schimansky,et al.  Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders , 2003 .

[6]  Dennis M. Dimiduk,et al.  Progress in the understanding of gamma titanium aluminides , 1991 .

[7]  Dennis M. Dimiduk,et al.  Microstructure development in gamma alloy mill products by thermomechanical processing , 1998 .

[8]  A. Leonov,et al.  Structural defects and thermal stability of Ti(Al) solid solution obtained by mechanical alloying , 1998 .

[9]  Wei Lu,et al.  Orientation relationships between TiB (B27), B2, and Ti3Al phases , 2009 .

[10]  R. Rawlings,et al.  Reaction synthesis of titanium aluminides , 2001 .

[11]  F. Karimzadeh,et al.  Study on solid-state reactions of nanocrystalline TiAl synthesized by mechanical alloying , 2009 .

[12]  B. Liu,et al.  Comparative assessment of microstructure and compressive behaviours of PM TiAl alloy prepared by HIP and pseudo‐HIP technology , 2011 .

[13]  D. Eliezer,et al.  Synthesis, properties and applications of titanium aluminides , 1992 .

[14]  R. Averback,et al.  Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination , 2004 .

[15]  Zunjie Wei,et al.  Microstructural characterization and micromechanical properties of dual-phase carbide in arc-melted titanium aluminide base alloy with carbon addition , 2009 .

[16]  Yifu Shen,et al.  In-situ TiC particle reinforced Ti-Al matrix composites: Powder preparation by mechanical alloying and Selective Laser Melting behavior , 2009 .

[17]  Dennis M. Dimiduk,et al.  Microstructural Changes and Estimated Strengthening Contributions in a Gamma Alloy Ti-45Al-5Nb Pack-Rolled Sheet (Preprint) , 2009 .

[18]  R. Yang,et al.  The influence of alloying on the α2/(α2+γ)/γ phase boundaries in TiAl based systems , 2000 .

[19]  H. Ding,et al.  Microstructural evolution in superplastic deformation of a Ti3Al alloy , 2000 .

[20]  R. Gerling,et al.  Porosity and argon concentration in gas atomized γ-TiAl powder and hot isostatically pressed compacts , 1998 .

[21]  F. Karimzadeh,et al.  Synthesis and characterization of TiAl/α-Al2O3 nanocomposite by mechanical alloying , 2009 .

[22]  R. N. Wright,et al.  Submicron defects in rapidly solidified type 304 stainless steel powders containing noble gases , 1988 .

[23]  H. Clemens,et al.  Technology and mechanical properties of advanced γ-TiAl based alloys , 2009 .

[24]  M. Oehring,et al.  The formation of metastable Ti–Al solid solutions by mechanical alloying and ball milling , 1993 .

[25]  W. Soboyejo,et al.  A probabilistic framework for the modeling of fatigue in cast lamellar gamma-based titanium aluminides , 2004 .

[26]  Xuekun Lu,et al.  Microstructure and mechanical properties of a spark plasma sinteredTi–45Al–8.5Nb–0.2W–0.2B–0.1Y alloy , 2009 .

[27]  Xinhua Wu,et al.  Alloy and process development of TiAl , 2004 .

[28]  Y. Uprety,et al.  An x-ray photoemission electron microscopy study of the formation of Ti–Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling , 2009, Nanotechnology.

[29]  U. Habel,et al.  HIP temperature and properties of a gas-atomized γ-titanium aluminide alloy , 2004 .

[30]  Young-Won Kim,et al.  Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy , 1992 .

[31]  Kyosuke Kishida,et al.  Gamma Titanium Aluminide Alloys , 1994 .

[32]  J. Chrapoński,et al.  Microstructure and chemical composition of phases in Ti–48Al–2Cr–2Nb intermetallic alloy , 2003 .

[33]  W. Sha The evolution of microstructure during the processing of gamma Ti−Al alloys , 2006 .

[34]  G. Lütjering,et al.  Titanium : Engineering Materials and Processes , 2007 .

[35]  E. Cerreta,et al.  Formation of deformation twins in TiAl , 2001 .

[36]  F. Schimansky,et al.  High-temperature mechanical properties of hot isostatically pressed and forged gamma titanium aluminide alloy powder , 2002 .

[37]  S. Varma,et al.  Oxidation behavior and transmission electron microscope characterization of Ti-44Al-x Nb-2(Ta,Zr) alloys , 2003 .

[38]  H. Clemens,et al.  On the role of twinning during room temperature deformation of γ-TiAl based alloys , 2002 .

[39]  H. Clemens,et al.  Microstructural stability and creep behavior of a lamellar γ-TiAl based alloy with extremely fine lamellar spacing , 2002 .

[40]  Wole Soboyejo,et al.  Hall-petch relationships in gamma titanium aluminides , 1996 .

[41]  M. Mills,et al.  Microstructural effects on the tensile properties and deformation behavior of a Ti-48Al gamma titanium aluminide , 2003 .

[42]  H. Inui,et al.  High-temperature structural intermetallics , 2000 .

[43]  Yanlin Chen,et al.  The phase transformation and microstructure of TiAl/Ti2AlC composites caused by hot pressing , 2009 .

[44]  T. Cong,et al.  Microstructural instability and embrittlement behaviour of an Al-lean, high-Nb γ-TiAl-based alloy subjected to a long-term thermal exposure in air , 2010 .

[45]  Z. C. Liu,et al.  Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys , 2002 .

[46]  Yuyong Chen,et al.  Microstructures and mechanical properties of hot-pack rolled Ti-43Al-9V-Y alloy sheet , 2009 .

[47]  L. Zhao,et al.  Lightweight materials for aircraft applications , 1995 .

[48]  Deliang Zhang,et al.  Synthesis of an ultrafine grained TiAl based alloy by subzero temperature milling and HIP, its microstructure and mechanical properties , 2009 .

[49]  Young-Won Kim Strength and ductility in TiAl alloys , 1998 .

[50]  Kai-feng Zhang,et al.  Tensile behaviors of fine-grained γ-TiAl based alloys synthesized by pulse current auxiliary sintering , 2009 .

[51]  Yy Kim Intermetallic alloys based on gamma titanium aluminide , 1989 .

[52]  H. Fraser,et al.  The influence of second phase Ti3Al on the deformation mechanisms in TiAl , 1989 .

[53]  Sarala Djanarthany,et al.  An overview of monolithic titanium aluminides based on Ti3Al and TiAl , 2001 .

[54]  J. Wyrzykowski,et al.  Influence of the mechanical alloying parameters on crystallite size of Ti-Al powders , 1999 .

[55]  H. Kestler,et al.  Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing , 2004 .

[56]  W. Soboyejo,et al.  The fatigue and fracture behavior of a gamma-titanium aluminide intermetallic: Influence of ductile phase reinforcement , 1997 .

[57]  A. Kamali,et al.  Effect of ball milling on reaction between TiO2 and Al , 2009 .

[58]  M. Hasegawa,et al.  Lamellar orientation control in TiAl base alloys by a two-step compression process at high temperature , 2009 .

[59]  C. F. Yolton,et al.  P/M processing titanium aluminides , 1990 .

[60]  W. Soboyejo,et al.  Fatigue crack growth in cast gamma titanium aluminides , 1997 .

[61]  R. Keith Bird,et al.  Development of Protective Coatings for High‐Temperature Metallic Materials , 2004 .

[62]  P. R. Smith,et al.  Review A P/M approach for the fabrication of an orthorhombic titanium aluminide for MMC applications , 2000 .

[63]  R. A. Harding,et al.  Microstructure and tensile properties of investment cast Ti-46Al-8Nb-1B alloy , 2002 .

[64]  A. Kamali,et al.  Effects of mechanical alloying on the characteristics of a nanocrystalline Ti–50 at.%Al during hot pressing consolidation , 2010 .

[65]  Yuyong Chen,et al.  Effect of heat treatment on microstructures and tensile properties of as-forged Ti-45Al-5Nb-0.3Y alloy , 2011 .

[66]  M. Mclean,et al.  Characterization of TiAl intermetallic rods produced from elemental powders by hot extrusion reaction synthesis (HERS) , 1997 .

[67]  F. D. Fischer,et al.  Deformation mechanisms in TiAl intermetallics - experiments and modelling , 2003 .

[68]  Annick Loiseau,et al.  Weak-beam observation of a dissociation transition in TiAl , 1988 .

[69]  Zhengming Sun,et al.  Fabrication of TiAl alloys by MA-PDS process and the mechanical properties , 2003 .

[70]  C. T. Liu,et al.  High-temperature ordered intermetallic alloys , 1985 .

[71]  R. Braun,et al.  Oxidation Behaviour of TBC Systems on γ-TiAl Based Alloy Ti–45Al–8Nb , 2009 .

[72]  R. Ramanujan Phase transformations in γ based titanium aluminides , 2000 .

[73]  H. Clemens,et al.  Processing, Properties and Applications of Gamma Titanium Aluminide Sheet and Foil Materials , 1996 .

[74]  T. Chandrashekar,et al.  Effects and mechanisms of grain refinement in aluminium alloys , 2001 .

[75]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[76]  R. Subramanian,et al.  Nanocrystalline and amorphous structure formation in Ti–Al system during high energy ball milling , 2005 .

[77]  D. Dimiduk,et al.  Dislocation structures and deformation behaviour of Ti-50/52Al alloys between 77 and 1173 K , 1995 .

[78]  Norman M. Wereley,et al.  Microstructure and mechanical properties of consolidated gamma titanium aluminides , 2007 .

[79]  R. Cummings,et al.  Fifty years of hypersonics: where we've been, where we're going , 2003 .

[80]  Xinhua Wu,et al.  Gamma titanium aluminide, TNB , 2005 .

[81]  S. Das,et al.  Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings (vol 203, pg 1797, 2009) , 2009 .

[82]  Dehua Yang,et al.  Laser processing of titanium aluminides , 2000 .

[83]  R. Bohn,et al.  Mechanical behavior of submicron-grained γ-TiAl-based alloys at elevated temperatures , 2001 .

[84]  D. Shih,et al.  Fundamental aspects of fatigue and fracture in a TiAl sheet alloy , 1998 .

[85]  Young-Won Kim,et al.  Gamma titanium aluminides , 1995 .

[86]  F. Schimansky,et al.  Spray forming of gamma titanium aluminides , 1999 .

[87]  Paul A. Bartolotta,et al.  Titanium Aluminide Applications in the High Speed Civil Transport , 1999 .

[88]  Young-Won Kim Effects of microstructure on the deformation and fracture of γ-TiAl alloys , 1995 .

[89]  B. Rabin,et al.  Characterization of entrapped gases in rapidly solidified powders , 1990 .

[90]  P. A. Blenkinsop,et al.  Recrystallization in cast 45-2-2 XD titanium aluminide during hot isostatic pressing , 1999 .

[91]  J. Hooker,et al.  Metal matrix composites for aeroengines , 2000 .

[92]  Shaoqing Wang,et al.  Nb effects on the structural and mechanical properties of TiAl alloy: Density-functional theory study , 2009 .

[93]  F. Froes,et al.  MICROSTRUCTURAL EVOLUTION OF A NANOCRYSTALLINE Ti-47Al-3Cr ALLOY ON ANNEALING AT 1200°C , 1998 .

[94]  G. Janowski,et al.  Phase transformation effects during hip of TiAl , 1992 .

[95]  M. Shazly,et al.  Dynamic Fracture Initiation Toughness of a Gamma (Met-PX) Titanium Aluminide at Elevated Temperatures , 2009 .

[96]  C. Koo,et al.  The high temperature tensile properties and microstructural analysis of Ti–40Al–15Nb alloy , 2002 .

[97]  V. L. Acoff,et al.  Titanium aluminide sheets made using roll bonding and reaction annealing , 2010 .

[98]  C. Klinkenberg,et al.  Physical aspects of hot-working gamma-based titanium aluminides , 2004 .

[99]  G. Gonzalez,et al.  Solid state amorphisation in binary systems prepared by mechanical alloying , 2009 .

[100]  H. Clemens,et al.  Recent Advances in Development and Processing of Titanium Aluminide Alloys , 2000 .

[101]  D. Larsen,et al.  Room-Temperature strength and deformation of Tib2-reinforced near-γ titanium aluminides , 1994 .

[102]  D. J. Lovell,et al.  NASA Tech Briefs , 1978 .

[103]  Norman M. Wereley,et al.  Intelligent Control of Consolidation and Solidification Processes , 1993 .

[104]  W. J. Zhang,et al.  On the origin of superior high strength of Ti–45Al–10Nb alloys , 2002 .

[105]  A. Paxton,et al.  Atomistic studies of ⟨101] screw dislocation core structures and glide in γ-TiAl , 2009 .

[106]  R. Wagner,et al.  Novel design concepts for gamma-base titanium aluminide alloys , 2000 .

[107]  Chengjun Liu,et al.  Fracture characteristics of γ-TiAl alloy with high Nb content under cyclic loading , 2009 .

[108]  Wayne Eric Voice,et al.  The future use of gamma titanium aluminides by Rolls‐Royce , 1999 .

[109]  Chun‐Sing Lee,et al.  Effects of microstructural parameters on the fatigue crack growth of fully lamellar γ-TiAl alloys , 2002 .

[110]  J. Paszula,et al.  Explosive consolidation of mechanically alloyed Ti-Al alloys , 1997 .