Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes

[1]  Pengcheng Mao,et al.  Dual-doping for enhancing chemical stability of functional anionic units in sulfide for high-performance all-solid-state lithium batteries , 2023, Journal of Energy Chemistry.

[2]  Chuang Yu,et al.  Synergy of I-Cl co-occupation on halogen-rich argyrodites and resultant dual-layer interface for advanced all-solid-state Li metal batteries , 2023, Journal of Energy Chemistry.

[3]  A. Gross,et al.  Fluorine-Substituted Halide Solid Electrolytes with Enhanced Stability toward the Lithium Metal , 2023, ACS applied materials & interfaces.

[4]  Quanbing Liu,et al.  Dual mechanism of electrostatic shielding and iodide redox for self-healing lithium metal anodes , 2023, Chemical Engineering Science.

[5]  Lv Hu,et al.  Alternate Crystal Structure Achieving Ionic Conductivity above 1 mS cm-1 in Cost-Effective Zr-Based Chloride Solid Electrolytes. , 2023, Nano letters.

[6]  Jinlong Zhu,et al.  A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries , 2023, Journal of Power Sources.

[7]  Hyun‐Wook Lee,et al.  Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries , 2023, Nature communications.

[8]  Shijie Cheng,et al.  Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 solid electrolytes , 2023, Energy Material Advances.

[9]  Bingbing Tian,et al.  Li-richening strategy in Li2ZrCl6 lattice towards enhanced ionic conductivity , 2023, Journal of Energy Chemistry.

[10]  Sun-I Kim,et al.  Cl- and Al-Doped Argyrodite Solid Electrolyte Li6PS5Cl for All-Solid-State Lithium Batteries with Improved Ionic Conductivity , 2022, Nanomaterials.

[11]  Weixiao Ji,et al.  Probing process kinetics in batteries with electrochemical impedance spectroscopy , 2022, Communications Materials.

[12]  K. Hatzell Opportunities for halide solid electrolytes in solid-state batteries , 2022, Matter.

[13]  Jiaqi Huang,et al.  A Nafion protective layer for stabilizing lithium metal anodes in working lithium–sulfur batteries , 2022, Battery Energy.

[14]  Chen‐Zi Zhao,et al.  The timescale identification decoupling complicated kinetic processes in lithium batteries , 2022, Joule.

[15]  Junhao Li,et al.  Achieving Dendrite–free Lithium Plating/Stripping from Mixed Ion/Electron–Conducting Scaffold Li2S@Ni NWs-NF for Stable Lithium Metal Anodes , 2022, Chemical Engineering Journal.

[16]  Ru‐Shi Liu,et al.  Halide‐type Li‐ion conductors: Future options for high‐voltage all‐solid‐state batteries , 2022, Journal of the Chinese Chemical Society.

[17]  Yongfu Tang,et al.  Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles during Electrochemical Reaction with Lithium. , 2021, Nano letters.

[18]  Jia Xie,et al.  Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping , 2021, Chinese Chemical Letters.

[19]  X. Shen,et al.  Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes , 2021, Chinese Chemical Letters.

[20]  B. Hwang,et al.  Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries , 2021, Nano Energy.

[21]  Feixiang Wu,et al.  Air‐stable inorganic solid‐state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects , 2021, InfoMat.

[22]  Yingying Lu,et al.  A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries , 2021, Nature Communications.

[23]  C. Nan,et al.  Tailoring inorganic–polymer composites for the mass production of solid-state batteries , 2021, Nature Reviews Materials.

[24]  Luhan Ye,et al.  A dynamic stability design strategy for lithium metal solid state batteries , 2021, Nature.

[25]  Meng Yang,et al.  Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance , 2020 .

[26]  Guangda Li,et al.  Li–LiAl alloy composite with memory effect as high-performance lithium metal anode , 2020 .

[27]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[28]  Qian Sun,et al.  Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries , 2020 .

[29]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[30]  Jinbao Zhao,et al.  Strengthening dendrite suppression in lithium metal anode by in-situ construction of Li–Zn alloy layer , 2019, Electrochemistry Communications.

[31]  Changhong Wang,et al.  H2O-Mediated Synthesis of Superionic Halide Solid Electrolyte. , 2019, Angewandte Chemie.

[32]  Parvin Adeli,et al.  Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. , 2019, Angewandte Chemie.

[33]  Adelaide M. Nolan,et al.  Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. , 2019, Angewandte Chemie.

[34]  Yanyan Liu,et al.  All-in-one improvement toward Li6PS5Br-Based solid electrolytes triggered by compositional tune , 2019, Journal of Power Sources.

[35]  Y. Meng,et al.  Quantifying inactive lithium in lithium metal batteries , 2018, Nature.

[36]  Qiang Bai,et al.  Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries , 2018, Joule.

[37]  Li-Min Wang,et al.  Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[38]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[39]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[40]  Feixiang Wu,et al.  Influence of annealing on ionic transfer and storage stability of Li 2 S–P 2 S 5 solid electrolyte , 2015 .

[41]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[42]  Tao Zhang,et al.  A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6 Al0.4(PO4)3 , 2012 .