Signals ratio method combined with wavelet transform: application to resolution of overlapped electrochemical signals

A signals ratio method combined with wavelet transform was proposed for the resolution of a weak voltammetric signal overlapped by other components. The signals ratio method usually suffers from interference from noise and baseline contained in the original signals because these factors cause distortion of the signals ratio. The multiresolution capability of the wavelet transform method was exploited here to simultaneously remove or reduce the noise and background. As a result, a deformation-free signals ratio with good signal-to-noise ratio (SNR) was obtained even for very noisy signals. The properties of the proposed method were compared to other resolution methods. It was demonstrated that the combined signals ratio wavelet transform method was particularly applicable to resolve a minor component in the presence of large amount of other components, suggesting that it can provide improved detection limits and quantified results for minor components. The method was employed for the voltammetric determination of residual chlorine in the presence of N,N-diethyl-p-phenylenediamine (DPD).

[1]  Ivanka Pižeta Deconvolution of non-resolved voltammetric signals , 1994 .

[2]  Alessandro Ulrici,et al.  Multicomponent analysis of electrochemical signals in the wavelet domain. , 2003, Talanta.

[3]  D. Massart,et al.  The use of wavelets for signal denoising in capillary electrophoresis. , 2001, Analytical chemistry.

[4]  Miquel Esteban,et al.  Signals ratio method for resolution enhancement in differential pulse polarography and related techniques , 1995 .

[5]  X. Shao,et al.  A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform , 2000, Fresenius' journal of analytical chemistry.

[6]  Jiye Jin,et al.  A Miniaturized FIA System for the Determination of Residual Chlorine in Environmental Water Samples , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[7]  Alexander Kai-man Leung,et al.  Wavelet Transform: A Method for Derivative Calculation in Analytical Chemistry , 1998 .

[8]  Jianbin Zheng,et al.  Genetic algorithms based on wavelet transform for resolving simulated overlapped spectra , 2003, Analytical and bioanalytical chemistry.

[9]  Miquel Esteban,et al.  Determination of small amounts of analytes in the presence of a large excess of one analyte from multi-analyte global signals of differential-pulse voltammetry and related techniques with the signal ratio resolution method , 1996 .

[10]  I. Pizeta,et al.  Detection and resolution enhancement of two close electrochemical processes , 1990 .

[11]  D. Kell,et al.  An introduction to wavelet transforms for chemometricians: A time-frequency approach , 1997 .

[12]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  B. K. Alsberg Representation of spectra by continuous functions , 1993 .

[14]  H. Mantsch,et al.  Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours , 1981 .

[15]  Miquel Esteban,et al.  Resolution of global signals using ratio differential pulse polarograms: Determination of p-nitroaniline and p-nitrotoluene in their mixture , 1997 .

[16]  A. Berg,et al.  Silicon-Based Chlorine Sensor with On-Wafer Deposited Chemically Anchored Diffusion Membrane , 1992 .

[17]  A. T. Palin,et al.  Methods for the determination in water of free and combined available chlorine dioxide and chlorine, bromine, iodine and ozone using diethyl-p-phenylene diamine (DPD) , 1967 .