SVIn2: An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain.Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization – one of the main problems affecting other packages in underwater domain – by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness.

[1]  O. Pizarro,et al.  Towards Geo-Referenced AUV Navigation Through Fusion of USBL and DVL Measurements , 2006, OCEANS 2006.

[2]  Matthew Johnson-Roberson,et al.  Mapping Submerged Archaeological Sites using Stereo‐Vision Photogrammetry , 2013 .

[3]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[4]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[5]  Gregory Dudek,et al.  Enabling autonomous capabilities in underwater robotics , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  John Folkesson,et al.  Feature tracking for underwater navigation using sonar , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Sol Pedre,et al.  Realtime Edge Based Visual Inertial Odometry for MAV Teleoperation in Indoor Environments , 2018, J. Intell. Robotic Syst..

[9]  Alberto Quattrini Li,et al.  Sonar Visual Inertial SLAM of Underwater Structures , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Alberto Quattrini Li,et al.  A Modular Sensor Suite for Underwater Reconstruction , 2018, OCEANS 2018 MTS/IEEE Charleston.

[11]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[12]  Jason M. O'Kane,et al.  Experimental Comparison of Open Source Vision-Based State Estimation Algorithms , 2016, ISER.

[13]  Alberto Quattrini Li,et al.  Experimental Comparison of Open Source Visual-Inertial-Based State Estimation Algorithms in the Underwater Domain , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[15]  Javier Civera,et al.  1‐Point RANSAC for extended Kalman filtering: Application to real‐time structure from motion and visual odometry , 2010, J. Field Robotics.

[16]  Andrew Hogue,et al.  A visually guided swimming robot , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Laura Lindzey,et al.  SUNFISH®: A human-portable exploration AUV for complex 3D environments , 2018, OCEANS 2018 MTS/IEEE Charleston.

[18]  Davide Scaramuzza,et al.  A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Paul Newman,et al.  Appearance-only SLAM at large scale with FAB-MAP 2.0 , 2011, Int. J. Robotics Res..

[20]  Y. Petillot,et al.  Visual SLAM for underwater vehicles using video velocity log and natural landmarks , 2008, OCEANS 2008.

[21]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[22]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[23]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[24]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[25]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[26]  Franz S. Hover,et al.  Imaging sonar-aided navigation for autonomous underwater harbor surveillance , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Peter I. Corke,et al.  Experiments with Underwater Robot Localization and Tracking , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[28]  J Snyder,et al.  Doppler Velocity Log (DVL) navigation for observation-class ROVs , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[29]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[30]  Sea-Moon Kim,et al.  Underwater Navigation System Based On Inertial Sensor And Doppler Velocity Log Using Indirect Feedback Kalman Filter , 2005 .

[31]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[32]  John J. Leonard,et al.  Relocating Underwater Features Autonomously Using Sonar-Based SLAM , 2013, IEEE Journal of Oceanic Engineering.

[33]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[34]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[35]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[36]  Javier Civera,et al.  1-Point RANSAC for extended Kalman filtering: Application to real-time structure from motion and visual odometry , 2010 .

[37]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[38]  Stefan B. Williams,et al.  Bundle adjustment in large-scale 3D reconstructions based on underwater robotic surveys , 2011, OCEANS 2011 IEEE - Spain.

[39]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[40]  Roland Siegwart,et al.  Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback , 2017, Int. J. Robotics Res..

[41]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[42]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Gregory Dudek,et al.  State estimation of an underwater robot using visual and inertial information , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.