Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure

Deep subwavelength photolithography with a metallic grating waveguide heterostructure (MGWHS) is presented and numerically demonstrated by a finite-difference time-domain method. This lithography scheme is demonstrated by interference between the diffracted waves of the mask which are enhanced by the surface plasmon polariton (SPP) resonance in this MGWHS. The relationship between the pattern resolution and the thickness of the photoresist is discussed. With proper choices of the dimensions of the proposed MGWHS and the illumination light, either a deep subwavelength (similar to lambda/17) pattern with sufficient contrast or a high quality interference pattern can be achieved. This approach is suitable for application to deep subwavelength photolithography without expensive equipment.

[1]  Zhaowei Liu,et al.  Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers , 2008 .

[2]  S. Chen,et al.  Numerical simulation of surface-plasmon-assisted nanolithography. , 2005, Optics express.

[3]  Changtao Wang,et al.  Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. , 2009, Optics express.

[4]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[5]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[6]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[7]  Q. Luo,et al.  Subwavelength nanolithography using surface plasmons , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[8]  R. Blaikie,et al.  Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. , 2007, Optics express.

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  Xiaowei Guo,et al.  Large-area surface-plasmon polariton interference lithography. , 2006, Optics letters.

[11]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[12]  Changtao Wang,et al.  Subwavelength nanolithography based on unidirectional excitation of surface plasmons , 2009 .

[13]  M. Madou Fundamentals of microfabrication , 1997 .

[14]  Excitation of gap modes in a metal particle-surface system for sub-30 nm plasmonic lithography. , 2009, Optics letters.

[15]  D. Shao,et al.  Surface-plasmon-assisted nanoscale photolithography by polarized light , 2005 .

[16]  Changtao Wang,et al.  Plasmonic interference nanolithography with a double-layer planar silver lens structure. , 2009, Optics express.

[17]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[18]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[19]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[20]  Changtao Wang,et al.  Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns , 2009 .

[21]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[22]  Changtao Wang,et al.  Sub-diffraction-limited interference photolithography with metamaterials. , 2008, Optics express.

[23]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.