The Climatological Impacts of Continental Surface Evaporation, Rainout, and Subcloud Processes on δD of Water Vapor and Precipitation in Europe

All types of applications of stable water isotopes, for example, for the reconstruction of paleotemperatures or for climate model validation, rely on a proper understanding of the mechanisms determining the isotopic composition of water vapor and precipitation. In this study, we use the isotope‐enabled limited‐area model COSMOiso to characterize the impacts of continental evapotranspiration, rainout, and subcloud processes on δD of European water vapor and precipitation. To this end, we first confirm a reliable implementation of the most important isotope fractionation processes in COSMOiso by comparing 5 years of modeled δD values with multiplatform δD observations from Europe (remote sensing observations of the δD of water vapor around 2.6 km above ground level, in situ δD measurements in near‐surface water vapor, and δD precipitation data from the Global Network of Isotopes in Precipitation). Based on six 15 year sensitivity simulations, we then quantify the climatological impacts of the different fractionation processes on the δD values. We find δD of European water vapor and precipitation to be most strongly controlled by rainout. Superimposed to this are the effect of subcloud processes, which especially affects δD in precipitation under warm conditions, and the effect of continental evapotranspiration, which exerts an important control over the δD of near‐surface water vapor. In future studies, the validated COSMOiso model can be employed in a similar way for a comprehensive interpretation of European isotope records from climatologically different time periods.

[1]  M. Schneider,et al.  The influence of snow sublimation and meltwater evaporation on δ D of water vapor in the atmospheric boundary layer of central Europe , 2017 .

[2]  M. Schneider,et al.  MUSICA MetOp/IASI {H2O;δD} pair retrieval simulations for validating tropospheric moisture pathways in atmospheric models , 2016 .

[3]  H. Wernli,et al.  The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights , 2016 .

[4]  J. Welker,et al.  The Water Isotopic Version of the Land-Surface Model ORCHIDEE: Implementation, Evaluation, Sensitivity to Hydrological Parameters , 2016 .

[5]  T. Blumenstock,et al.  Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observationsof tropospheric {H 2 O, δ D} pairs – a review , 2016 .

[6]  H. Wernli,et al.  Drivers of δ2H variations in an idealized extratropical cyclone , 2016 .

[7]  E. Mahieu,et al.  Tropospheric water vapour isotopologue data (H 2 16 O, H 2 18 O, and HD 16 O) as obtained from NDACC/FTIR solar absorption spectra , 2016 .

[8]  H. Wernli,et al.  Isotope meteorology of cold front passages: A case study combining observations and modeling , 2015 .

[9]  J. McManus,et al.  Airborne in situ vertical profiling of HDO / H 2 16 O in the subtropical troposphere during the MUSICA remote sensing validation campaign , 2015 .

[10]  J. Welker,et al.  Aircraft validation of Aura Tropospheric Emission Spectrometer retrievals of HDO / H 2 O , 2014 .

[11]  J. Jouzel,et al.  A posteriori calculation of δ 18 O and δD in atmospheric water vapour from ground-based near-infrared FTIR retrievals of H 2 16 O, H 2 18 O, and HD 16 O , 2014 .

[12]  Hans-Christian Steen-Larsen,et al.  Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements , 2014 .

[13]  G. Schmidt,et al.  Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES , 2014 .

[14]  D. Guaraglia,et al.  8 Ground-Based Remote Sensing Systems , 2014 .

[15]  Hans-Christian Steen-Larsen,et al.  Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation , 2014 .

[16]  Harald Sodemann,et al.  Deuterium excess as a proxy for continental moisture recycling and plant transpiration , 2013 .

[17]  T. Blumenstock,et al.  Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA , 2012 .

[18]  H. Wernli,et al.  Measuring variations of δ 18 O and δ 2 H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study , 2012 .

[19]  D. S. Sayres,et al.  Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations , 2012 .

[20]  D. P. Brown,et al.  Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics , 2012 .

[21]  Kelly K. Caylor,et al.  Direct quantification of leaf transpiration isotopic composition , 2012 .

[22]  Jonathon S. Wright,et al.  Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory , 2011 .

[23]  R. Edwards,et al.  NALPS: a precisely dated European climate record 120–60 ka , 2011 .

[24]  Matthias Schneider,et al.  Optimal estimation of tropospheric H 2 O and δD with IASI/METOP , 2011 .

[25]  H. Wernli,et al.  The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMO iso , 2011 .

[26]  T. Coplen Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. , 2011, Rapid communications in mass spectrometry : RCM.

[27]  Martin Werner,et al.  Stable water isotopes in the ECHAM5 general circulation model: Toward high‐resolution isotope modeling on a global scale , 2011 .

[28]  Dylan B. A. Jones,et al.  Effects of postcondensation exchange on the isotopic composition of water in the atmosphere , 2010 .

[29]  Z. Kuang,et al.  Isotopic composition of water in the tropical tropopause layer in cloud‐resolving simulations of an idealized tropical circulation , 2010 .

[30]  Xiaomin Sun,et al.  The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration , 2010 .

[31]  T. Fichefet,et al.  Evaluating climate model performance with various parameter sets using observations over the recent past , 2010 .

[32]  H. Wernli,et al.  Lagrangian simulations of stable isotopes in water vapor: An evaluation of nonequilibrium fractionation in the Craig-Gordon model , 2009 .

[33]  I. Aben,et al.  Dynamic Processes Governing Lower-Tropospheric HDO/H2O Ratios as Observed from Space and Ground , 2009, Science.

[34]  H. Sodemann,et al.  Seasonal and inter‐annual variability of the moisture sources for Alpine precipitation during 1995–2002 , 2009 .

[35]  A. Hense,et al.  The Regional Climate Model COSMO-CLM (CCLM) , 2008 .

[36]  Kevin Bowman,et al.  Importance of rain evaporation and continental convection in the tropical water cycle , 2007, Nature.

[37]  K. Bowman,et al.  Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization , 2006 .

[38]  J. Jouzel,et al.  GRIP Deuterium Excess Reveals Rapid and Orbital-Scale Changes in Greenland Moisture Origin , 2005, Science.

[39]  G. Farquhar,et al.  On the isotopic composition of leaf water in the non-steady state. , 2005, Functional plant biology : FPB.

[40]  J. Berry,et al.  A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses , 2002 .

[41]  I. Simmers,et al.  Groundwater recharge: an overview of processes and challenges , 2002 .

[42]  R. L. Edwards,et al.  A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China , 2001, Science.

[43]  H. Storch,et al.  A Spectral Nudging Technique for Dynamical Downscaling Purposes , 2000 .

[44]  H. Griffiths,et al.  Determinants of isotopic coupling of CO2 and water vapour within a Quercus petraea forest canopy , 1999, Oecologia.

[45]  M. Heimann,et al.  Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years , 1998 .

[46]  R. Mathieu,et al.  A numerical model for the simulation of stable isotope profiles in drying soils , 1996 .

[47]  P. Danesi,et al.  Global monitoring of the isotopic composition of precipitation , 1996 .

[48]  J. Gat OXYGEN AND HYDROGEN ISOTOPES IN THE HYDROLOGIC CYCLE , 1996 .

[49]  S. Gedzelman,et al.  Modeling the isotopic composition of precipitation , 1994 .

[50]  C. Sonntag,et al.  An 8‐year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany , 1991 .

[51]  J. Jouzel,et al.  Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation , 1984 .

[52]  J. Jouzel,et al.  A general circulation model of water isotope cycles in the atmosphere , 1984, Nature.

[53]  C. Taylor Vertical distribution of deuterium in atmospheric water vapour: problems in application to assess atmospheric condensation models , 1984 .

[54]  L. Merlivat Molecular diffusivities of H2 16O,HD16O, and H2 18O in gases , 1978 .

[55]  M. Stewart Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes , 1975 .

[56]  H. Förstel,et al.  On the enrichment of H218O in the leaves of transpiring plants , 1974, Radiation and environmental biophysics.

[57]  W. Dansgaard,et al.  One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet , 1969, Science.

[58]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[59]  L. Machta,et al.  Water‐vapor exchange between a water droplet and its environment , 1962 .

[60]  M. Dole THE ISOTOPIC FRACTIONATION OF WATER BY PHYSIOLOGICAL PROCESSES. , 1936, Science.

[61]  E. Smith THE ISOTOPIC FRACTIONATION OF WATER BY PHYSIOLOGICAL PROCESSES--AN ADDITION. , 1934, Science.

[62]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[63]  M. Dütsch Stable water isotope fractionation processes in weather systems and their influence on isotopic variability on different time scales , 2016 .

[64]  K. Yoshimura Stable Water Isotopes in Climatology, Meteorology, and Hydrology: A Review , 2015 .

[65]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[66]  R. Koster,et al.  Water isotopes in precipitation:. data/model comparison for present-day and past climates , 2000 .

[67]  J. Jouzel Chapter 2 – ISOTOPES IN CLOUD PHYSICS: MULTIPHASE AND MULTISTAGE CONDENSATION PROCESSES , 1986 .

[68]  G. B. Allison,et al.  The distribution of deuterium and 18O in dry soils: 1. Theory , 1983 .

[69]  M. Majoube Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur , 1971 .

[70]  M. Majoube Fractionnement en 180 entre la glace et la vapeur d'eau , 1971 .

[71]  H. Craig,et al.  Deuterium and oxygen 18 variations in the ocean and marine atmosphere , 1965 .