A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion

The rate of tidal disruption events (TDEs), , is predicted to depend on stellar conditions near the super-massive black hole (SMBH), which are on difficult-to-measure sub-parsec scales. We test whether depends on kpc-scale global galaxy properties, which are observable. We concentrate on stellar surface mass density, , and velocity dispersion, , which correlate with the stellar density and velocity dispersion of the stars around the SMBH. We consider 35 TDE candidates, with and without known X-ray emission. The hosts range from star-forming to quiescent to quiescent with strong Balmer absorption lines. The last (often with post-starburst spectra) are overrepresented in our sample by a factor of or , depending on the strength of the Hδ absorption line. For a subsample of hosts with homogeneous measurements, – , higher on average than for a volume-weighted control sample of Sloan Digital Sky Survey galaxies with similar redshifts and stellar masses. This is because (1) most of the TDE hosts here are quiescent galaxies, which tend to have higher than the star-forming galaxies that dominate the control, and (2) the star-forming hosts have higher average than the star-forming control. There is also a weak suggestion that TDE hosts have lower than for the quiescent control. Assuming that , and applying a statistical model to the TDE hosts and control sample, we estimate and . This is broadly consistent with being tied to the dynamical relaxation of stars surrounding the SMBH.

[1]  S. Velzen On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons , 2017, 1707.03458.

[2]  J. Prieto,et al.  The Ultraviolet Spectroscopic Evolution of the Low-Luminosity Tidal Disruption Event iPTF16fnl , 2017, 1704.02321.

[3]  J. Guillochon,et al.  A Comparison of the X-Ray Emission from Tidal Disruption Events with those of Active Galactic Nuclei , 2017, 1703.06141.

[4]  R. Foley,et al.  Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population , 2017, 1707.01559.

[5]  E. Berger,et al.  PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy , 2017, 1703.07816.

[6]  S. Gezari,et al.  Revisiting Optical Tidal Disruption Events with iPTF16axa , 2017, 1703.01299.

[7]  P. Crowther,et al.  A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237 , 2017, Nature Astronomy.

[8]  B. Zauderer,et al.  A likely decade-long sustained tidal disruption event , 2017, Nature Astronomy.

[9]  M. Geller,et al.  Velocity Dispersion, Size, Sérsic Index, and Dn4000: The Scaling of Stellar Mass with Dynamical Mass for Quiescent Galaxies , 2017, 1701.01350.

[10]  E. Berger,et al.  X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.

[11]  M. Sullivan,et al.  The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.

[12]  A. B. Danilet,et al.  The ASAS-SN bright supernova catalogue – I. 2013–2014 , 2016, 1604.00396.

[13]  J. Trump,et al.  Structural and Star-forming Relations since z ∼ 3: Connecting Compact Star-forming and Quiescent Galaxies , 2015, 1509.00469.

[14]  F. Bianco,et al.  Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae , 2016, 1612.07321.

[15]  J. Guillochon,et al.  New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths , 2016, 1611.02291.

[16]  K. Alexander,et al.  XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components , 2016, 1610.01788.

[17]  U. California,et al.  The Post-starburst Evolution of Tidal Disruption Event Host Galaxies , 2016, 1609.04755.

[18]  O. Graur,et al.  LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search , 2016, 1609.02921.

[19]  J. Prieto,et al.  MUSE REVEALS A RECENT MERGER IN THE POST-STARBURST HOST GALAXY OF THE TDE ASASSN-14li , 2016, 1609.00013.

[20]  D. Fabricant,et al.  THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7 , 2016, 1607.04275.

[21]  I. Chilingarian,et al.  COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8 , 2016, 1605.09734.

[22]  S. Velzen,et al.  AN ENHANCED RATE OF TIDAL DISRUPTIONS IN THE CENTRALLY OVERDENSE E+A GALAXY NGC 3156 , 2016, 1604.02056.

[23]  J. Prieto,et al.  ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc , 2016, 1602.01088.

[24]  Mark Lacy,et al.  SHOCKED POSTSTARBUST GALAXY SURVEY. I. CANDIDATE POST-STARBUST GALAXIES WITH EMISSION LINE RATIOS CONSISTENT WITH SHOCKS , 2016, 1601.05085.

[25]  Las Cumbres Observatory Global Telescope,et al.  TIDAL DISRUPTION EVENTS PREFER UNUSUAL HOST GALAXIES , 2016, 1601.04705.

[26]  A. J. van der Horst,et al.  A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li , 2015, Science.

[27]  C. Carollo,et al.  Evolution of density profiles in high-z galaxies: compaction and quenching inside-out , 2015, 1509.00017.

[28]  D. Bersier,et al.  ASASSN-15lh: A highly super-luminous supernova , 2015, Science.

[29]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[30]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[31]  The Stellar Mass Fundamental Plane and Compact Quiescent Galaxies at z < 0.6 , 2015, 1510.04703.

[32]  L. Kewley,et al.  GALAXY MERGERS DRIVE SHOCKS: AN INTEGRAL FIELD STUDY OF GOALS GALAXIES , 2015, 1509.08468.

[33]  A. Graham Galaxy bulges and their massive black holes: a review , 2015, 1501.02937.

[34]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[35]  O. Graur,et al.  A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra , 2014, 1412.7991.

[36]  Guillermo Barro,et al.  Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets , 2014, 1412.4783.

[37]  S. Faber,et al.  Two conditions for galaxy quenching: compact centres and massive haloes , 2014, 1406.5372.

[38]  G. Farrar,et al.  MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES , 2014, 1407.6425.

[39]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[40]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[41]  S. Faber,et al.  A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES , 2013, 1308.5224.

[42]  P. Jiang,et al.  LONG-TERM SPECTRAL EVOLUTION OF TIDAL DISRUPTION CANDIDATES SELECTED BY STRONG CORONAL LINES , 2013, 1307.3313.

[43]  L. Kewley,et al.  THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES , 2012, 1211.7062.

[44]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[45]  Joshua S. Bloom,et al.  LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS , 2012, 1210.0020.

[46]  C. Conselice,et al.  THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ⩽ z < 0.8 IN THE DEEP2/AEGIS SURVEY , 2012, 1210.4173.

[47]  T. Alexander Stellar dynamics and tidal disruption events in galactic nuclei , 2012, 1210.0582.

[48]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[49]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[50]  J. Kneib,et al.  Stellar Velocity Dispersions and Emission Line Properties of Sdss-iii/boss Galaxies Journal Article , 2022 .

[51]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[52]  R. D. Saxton,et al.  A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5 , 2012, 1202.5900.

[53]  S. Komossa,et al.  EXTREME CORONAL LINE EMITTERS: TIDAL DISRUPTION OF STARS BY MASSIVE BLACK HOLES IN GALACTIC NUCLEI? , 2012, 1202.1064.

[54]  M. Kesden Tidal disruption rate of stars by spinning supermassive black holes , 2011, 1109.6329.

[55]  Durham,et al.  From star-forming spirals to passive spheroids: integral field spectroscopy of E+A galaxies , 2011, 1110.5638.

[56]  M. Blanton,et al.  THE NATURE OF LINER-LIKE EMISSION IN RED GALAXIES , 2011, 1109.1280.

[57]  Lifan Wang,et al.  TRANSIENT SUPERSTRONG CORONAL LINES AND BROAD BUMPS IN THE GALAXY SDSS J074820.67+471214.3 , 2011, 1108.2790.

[58]  L. Ho,et al.  EXPLORING THE LOW-MASS END OF THE MBH–σ* RELATION WITH ACTIVE GALAXIES , 2011, 1106.6232.

[59]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[60]  E. O. Ofek,et al.  An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.

[61]  Nathaniel R. Butler,et al.  PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy , 2011, 1103.0779.

[62]  Fukun Liu,et al.  TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES , 2010, 1012.4466.

[63]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[64]  D. Finkbeiner,et al.  Measuring Reddening with SDSS Stellar Spectra , 2011 .

[65]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[66]  M. Eracleous,et al.  A TIDAL DISRUPTION FLARE IN A1689 FROM AN ARCHIVAL X-RAY SURVEY OF GALAXY CLUSTERS , 2010, 1008.4140.

[67]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[68]  R. Delgado,et al.  The properties of the stellar populations in ULIRGs – I. Sample, data and spectral synthesis modelling , 2009, 0908.0269.

[69]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[70]  Fukun Liu,et al.  ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES , 2009, 0904.4481.

[71]  M. Dopita,et al.  NTT, SPITZER, AND CHANDRA SPECTROSCOPY OF SDSSJ095209.56+214313.3: THE MOST LUMINOUS CORONAL-LINE SUPERNOVA EVER OBSERVED, OR A STELLAR TIDAL DISRUPTION EVENT? , 2009, 0902.3248.

[72]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[73]  R. D. Saxton,et al.  Evolution of tidal disruption candidates discovered by XMM-Newton , 2008, 0807.4452.

[74]  Case Western Reserve University,et al.  Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETAILED EVOLUTION OF E+A GALAXIES INTO EARLY TYPES 1 , 2022 .

[75]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[76]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[77]  G. Hasinger,et al.  Candidate tidal disruption events from the XMM-Newton slew survey , 2006, astro-ph/0612340.

[78]  C. Tremonti,et al.  E+A Galaxies with Blue Cores: Active Galaxies in Transition , 2006, astro-ph/0606368.

[79]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[80]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[81]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[82]  T. Lauer,et al.  E+A Galaxies and the Formation of Early-Type Galaxies at z ~ 0 , 2004, astro-ph/0402062.

[83]  Ucla,et al.  Chandra observations of five X-ray transient galactic nuclei , 2004, astro-ph/0401264.

[84]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[85]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[86]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[87]  S. Gezari,et al.  Follow-Up Hubble Space Telescope/Space Telescope Imaging Spectroscopy of Three Candidate Tidal Disruption Events , 2003 .

[88]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[89]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[90]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[91]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[92]  C. Boisson,et al.  Host galaxies of AGN , 2001, astro-ph/0111331.

[93]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[94]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[95]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[96]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[97]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[98]  Alan Dressler,et al.  A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies , 1999, astro-ph/9901263.

[99]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[100]  D. Ottaviani,et al.  Hγ and Hδ Absorption Features in Stars and Stellar Populations , 1997 .

[101]  S. Shectman,et al.  The environment of "E+A" galaxies , 1995, astro-ph/9512058.

[102]  Luis C. Ho,et al.  A Search for ``Dwarf'' Seyfert Nuclei. II. an Optical Spectral Atlas of the Nuclei of Nearby Galaxies , 1995 .

[103]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[104]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[105]  E. Phinney Cosmic merger mania , 1989, Nature.

[106]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[107]  James E. Gunn,et al.  Spectroscopy of galaxies in distant clusters. II: The population of the 3C 295 cluster , 1983 .

[108]  Charles H. Townes,et al.  The nature of the central parsec of the Galaxy , 1982 .

[109]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[110]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[111]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[112]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .