Normal Vectors on Critical Manifolds for Robust Design of Transient Processes in the Presence of Fast Disturbances

Information on steady-state bifurcations, most notably stability boundaries, is frequently used for the analysis and design of nonlinear systems. The bifurcation points separate regions with different dynamic behavior and thus give valuable information about nonlinear systems. They cannot, however, reflect the impact of fast disturbances on the transient behavior of nonlinear systems. The influence of fast disturbances can be addressed by bifurcation points that are defined as critical points during the transient behavior of a dynamic system in the presence of fast disturbances. Specifically, we consider two types of points—grazing points and end-points. At a grazing point the trajectory of a nonlinear system tangentially touches a hypersurface spanned by a state or output constraint. At an end-point the trajectory crosses the hypersurface at a specified final time. These critical points unfold to manifolds in the parameter space of the nonlinear system separating parts of the parameter space that admit t...

[1]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[2]  L. Petzold,et al.  Software and algorithms for sensitivity analysis of large-scale differential algebraic systems , 2000 .

[3]  David D. Brengel,et al.  Coordinated design and control optimization of nonlinear processes , 1992 .

[4]  Christian H. Bischof,et al.  A Hybrid Approach for Efficient Robust Design of Dynamic Systems , 2007, SIAM Rev..

[5]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[6]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  V. Donde,et al.  Dynamic performance assessment: grazing and related phenomena , 2005, IEEE Transactions on Power Systems.

[8]  V. Vassiliadis,et al.  Second-order sensitivities of general dynamic systems with application to optimal control problems , 1999 .

[9]  P. I. Barton,et al.  Dynamic optimization with state variable path constraints , 1998 .

[10]  W. Marquardt,et al.  Structural analysis of differential-algebraic equation systems—theory and applications , 1995 .

[11]  Martin Mönnigmann,et al.  A method for robustness analysis of controlled nonlinear systems , 2004 .

[12]  C J Budd,et al.  Grazing and border-collision in piecewise-smooth systems: a unified analytical framework. , 2001, Physical review letters.

[13]  Zhenghong Yu,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[14]  Manfred Morari,et al.  Robust Model Predictive Control , 1987, 1987 American Control Conference.

[15]  P. I. Barton,et al.  DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .

[16]  Wolfgang Marquardt,et al.  Fast computation of the Hessian of the Lagrangian in shooting algorithms for dynamic optimization , 2007 .

[17]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[18]  Keith O. Geddes,et al.  Maple 9 Advanced Programming Guide , 2003 .

[19]  Dominique Bonvin,et al.  Robust predictive control based on neighboring extremals , 2004 .

[20]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[21]  Dominique Bonvin,et al.  Optimal Grade Transition in Industrial Polymerization Processes via NCO Tracking , 2007 .

[22]  Martin Mönnigmann,et al.  Steady-State Process Optimization with Guaranteed Robust Stability and Flexibility: Application to HDA Reaction Section , 2005 .

[23]  Martin Mönnigmann,et al.  Numerical solution approaches for robust nonlinear optimal control problems , 2008, Comput. Chem. Eng..

[24]  Moritz Diehl,et al.  An approximation technique for robust nonlinear optimization , 2006, Math. Program..

[25]  Frank Allgöwer,et al.  Robust model predictive control for nonlinear discrete‐time systems , 2003 .

[26]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[27]  J. Rawlings,et al.  A new robust model predictive control method I: theory and computation , 2004 .

[28]  J. A. Bandoni,et al.  Integrated flexibility and controllability analysis in design of chemical processes , 1997 .

[29]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[30]  Christodoulos A. Floudas,et al.  Stability in optimal design: Synthesis of complex reactor networks , 1994 .

[31]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[32]  Martin Mönnigmann,et al.  Normal Vectors on Manifolds of Critical Points for Parametric Robustness of Equilibrium Solutions of ODE Systems , 2002, J. Nonlinear Sci..

[33]  Efstratios N. Pistikopoulos,et al.  Parametric controllers in simultaneous process and control design optimization , 2003 .

[34]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[35]  W. Fleming Functions of Several Variables , 1965 .

[36]  F. Chu,et al.  BIFURCATION AND CHAOS IN A RUB-IMPACT JEFFCOTT ROTOR SYSTEM , 1998 .

[37]  W. Marquardt,et al.  Sensitivity analysis of linearly-implicit differential-algebraic systems by one-step extrapolation , 2004 .

[38]  Luigi Glielmo,et al.  Switchings, bifurcations, and chaos in DC/DC converters , 1998 .

[39]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[40]  Efstratios N. Pistikopoulos,et al.  Robust stability considerations in optimal design of dynamic systems under uncertainty , 1997 .

[41]  N. El‐Farra,et al.  Bounded robust control of constrained multivariable nonlinear processes , 2003 .

[42]  Ian A. Hiskens,et al.  Shooting Methods for Locating Grazing Phenomena in Hybrid Systems , 2006, Int. J. Bifurc. Chaos.

[43]  Reinhold Steinhauser,et al.  Application of vector performance optimization to a robust control loop design for a fighter aircraft , 1983 .

[44]  Peter L. Douglas,et al.  Integration of design and control : A robust control approach using MPC , 2008 .

[45]  Doraiswami Ramkrishna,et al.  Theoretical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors , 1982 .