TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion

We report for the first time fabrication of self-aligned hexagonally closed-packed titania nanotube arrays of over 1000 μm in length and aspect ratio ≈10 000 by potentiostatic anodization of titanium. We describe a process by which such thick nanotube array films can be transformed into self-standing, flat or cylindrical, mechanically robust, polycrystalline TiO2 membranes of precisely controlled nanoscale porosity. The self-standing membranes are characterized using Brunauer−Emmett−Teller surface area measurements, glancing angle X-ray diffraction, and transmission electron microscopy. In initial application, such membranes are used to control the diffusion of phenol red.

[1]  M. Shirai,et al.  Application of Titania Nanotubes to a Dye-sensitized Solar Cell , 2002 .

[2]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[3]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[4]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[5]  M. Gonellaa,et al.  The polyamide membrane in hemodiafiltration. , 1992 .

[6]  A. Djurišić,et al.  Titania-nanotube-array-based photovoltaic cells , 2006 .

[7]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[8]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[9]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[10]  Lixia Yang,et al.  Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization , 2006 .

[11]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[12]  C. Ronco,et al.  New Developments in Hemodialyzers , 2000, Blood Purification.

[13]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[14]  D. Ginley,et al.  Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films , 2007 .

[15]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[16]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[17]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[18]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[19]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[20]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[21]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[22]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[23]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[24]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[25]  J. Chao,et al.  A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol , 2007 .

[26]  A. Sk,et al.  Analysis of models of single-file diffusion. , 1988 .

[27]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[28]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[29]  K. Rajeshwar,et al.  Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. , 2006, The journal of physical chemistry. B.

[30]  Hongwen Yu,et al.  Photodegradation of humic substances on MWCNT/nanotubular-TiO2 composites , 2006 .

[31]  A. Bukovsky,et al.  Oogenesis in cultures derived from adult human ovaries , 2005, Reproductive biology and endocrinology : RB&E.

[32]  B. Katzenellenbogen,et al.  Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[34]  K. Ishihara,et al.  Platelet compatible blood filtration fabrics using a phosphorylcholine polymer having high surface mobility. , 2003, Biomaterials.

[35]  Computer simulation of single-file transport. , 1986 .

[36]  Hahn,et al.  Single-file diffusion observation. , 1996, Physical review letters.

[37]  H. Strathmann,et al.  Basic features of the polyamide membranes. , 1992, Contributions to nephrology.

[38]  Shahed U. M. Khan,et al.  Photoresponse of Visible Light Active Carbon-Modified -n-TiO2 Thin Films , 2007 .

[39]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.