Combined structural, biochemical and cellular evidence demonstrates that both FGDF motifs in alphavirus nsP3 are required for efficient replication

Recent findings have highlighted the role of the Old World alphavirus non-structural protein 3 (nsP3) as a host defence modulator that functions by disrupting stress granules, subcellular phase-dense RNA/protein structures formed upon environmental stress. This disruption mechanism was largely explained through nsP3-mediated recruitment of the host G3BP protein via two tandem FGDF motifs. Here, we present the 1.9 Å resolution crystal structure of the NTF2-like domain of G3BP-1 in complex with a 25-residue peptide derived from Semliki Forest virus nsP3 (nsP3-25). The structure reveals a poly-complex of G3BP-1 dimers interconnected through the FGDF motifs in nsP3-25. Although in vitro and in vivo binding studies revealed a hierarchical interaction of the two FGDF motifs with G3BP-1, viral growth curves clearly demonstrated that two intact FGDF motifs are required for efficient viral replication. Chikungunya virus nsP3 also binds G3BP dimers via a hierarchical interaction, which was found to be critical for viral replication. These results highlight a conserved molecular mechanism in host cell modulation.

[1]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[2]  J. Lieberman,et al.  G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits , 2016, The Journal of cell biology.

[3]  O. Kristensen Crystal structure of the G3BP2 NTF2-like domain in complex with a canonical FGDF motif peptide. , 2015, Biochemical and biophysical research communications.

[4]  S. Richard,et al.  Emerging Roles of Disordered Sequences in RNA-Binding Proteins. , 2015, Trends in biochemical sciences.

[5]  J. Vlak,et al.  Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus , 2015, Parasites & Vectors.

[6]  T. Ahola,et al.  Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization , 2015, Journal of Virology.

[7]  G. Mcinerney,et al.  FGDF motif regulation of stress granule formation. , 2015, DNA and cell biology.

[8]  R. Hardy,et al.  Alphavirus RNA synthesis and non-structural protein functions. , 2015, The Journal of general virology.

[9]  N. Kedersha,et al.  Methods for the characterization of stress granules in virus infected cells , 2015, Methods.

[10]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[11]  M. V. van Hemert,et al.  Stress Granule Components G3BP1 and G3BP2 Play a Proviral Role Early in Chikungunya Virus Replication , 2015, Journal of Virology.

[12]  N. Kedersha,et al.  Viral and Cellular Proteins Containing FGDF Motifs Bind G3BP to Block Stress Granule Formation , 2015, PLoS pathogens.

[13]  Andrej Sali,et al.  Comparative Protein Structure Modeling Using MODELLER , 2014, Current protocols in bioinformatics.

[14]  T. Ahola,et al.  The C-Terminal Repeat Domains of nsP3 from the Old World Alphaviruses Bind Directly to G3BP , 2014, Journal of Virology.

[15]  O. Kristensen,et al.  Crystal Structures of the Human G3BP1 NTF2-Like Domain Visualize FxFG Nup Repeat Specificity , 2013, PloS one.

[16]  Pavel Ivanov,et al.  Stress granules and cell signaling: more than just a passing phase? , 2013, Trends in biochemical sciences.

[17]  U. Toots,et al.  RIG-I and MDA-5 Detection of Viral RNA-dependent RNA Polymerase Activity Restricts Positive-Strand RNA Virus Replication , 2013, PLoS pathogens.

[18]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[19]  D. Braun,et al.  Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. , 2013, Methods.

[20]  G. B. Karlsson Hedestam,et al.  Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection , 2012, Molecular biology of the cell.

[21]  T. Maeda,et al.  Stress granules , 2012, Cell cycle.

[22]  J. Marcotrigiano,et al.  Structural and functional insights into alphavirus polyprotein processing and pathogenesis , 2012, Proceedings of the National Academy of Sciences.

[23]  Conrad C. Huang,et al.  UCSF Chimera, MODELLER, and IMP: an integrated modeling system. , 2012, Journal of structural biology.

[24]  J. Vlak,et al.  Chikungunya Virus nsP3 Blocks Stress Granule Assembly by Recruitment of G3BP into Cytoplasmic Foci , 2012, Journal of Virology.

[25]  Michael Krug,et al.  XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS , 2012 .

[26]  S. Hansen Monte Carlo estimation of the structure factor for hard bodies in small-angle scattering , 2012 .

[27]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[28]  R. Lloyd,et al.  Regulation of stress granules in virus systems , 2012, Trends in Microbiology.

[29]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[30]  Dieter Braun,et al.  Protein-binding assays in biological liquids using microscale thermophoresis. , 2010, Nature communications.

[31]  Pirjo Spuul,et al.  Phosphatidylinositol 3-Kinase-, Actin-, and Microtubule-Dependent Transport of Semliki Forest Virus Replication Complexes from the Plasma Membrane to Modified Lysosomes , 2010, Journal of Virology.

[32]  A. Merits,et al.  Novel Functions of the Alphavirus Nonstructural Protein nsP3 C-Terminal Region , 2009, Journal of Virology.

[33]  Gerhard G. Thallinger,et al.  VASCo: computation and visualization of annotated protein surface contacts , 2009, BMC Bioinformatics.

[34]  Roman A. Laskowski,et al.  PDBsum new things , 2008, Nucleic Acids Res..

[35]  E. Frolova,et al.  Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells , 2008, Journal of Virology.

[36]  Ming Tang,et al.  PROMALS3D web server for accurate multiple protein sequence and structure alignments , 2008, Nucleic Acids Res..

[37]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[38]  Narayanaswamy Srinivasan,et al.  Nucleic Acids Research Advance Access published June 21, 2007 PIC: Protein Interactions Calculator , 2007 .

[39]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[40]  J. Fazakerley,et al.  Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel , genetically stable marker virus , 2007 .

[41]  Dieter Braun,et al.  Why molecules move along a temperature gradient , 2006, Proceedings of the National Academy of Sciences.

[42]  Ileana M Cristea,et al.  Tracking and Elucidating Alphavirus-Host Protein Interactions* , 2006, Journal of Biological Chemistry.

[43]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[44]  E. Frolova,et al.  Formation of nsP3-Specific Protein Complexes during Sindbis Virus Replication , 2006, Journal of Virology.

[45]  P. Anderson,et al.  Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. , 2005, Molecular biology of the cell.

[46]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[47]  D. Hume,et al.  Rasputin, more promiscuous than ever: a review of G3BP. , 2004, The International journal of developmental biology.

[48]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[49]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[50]  K. Chébli,et al.  The RasGAP-associated endoribonuclease G3BP assembles stress granules , 2003, The Journal of cell biology.

[51]  A. Salonen,et al.  Properly Folded Nonstructural Polyprotein Directs the Semliki Forest Virus Replication Complex to the Endosomal Compartment , 2003, Journal of Virology.

[52]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[53]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[55]  Wei Li,et al.  RNA-Binding Proteins Tia-1 and Tiar Link the Phosphorylation of Eif-2α to the Assembly of Mammalian Stress Granules , 1999, The Journal of cell biology.

[56]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[57]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[58]  J. H. Strauss,et al.  The alphaviruses: gene expression, replication, and evolution , 1994, Microbiological reviews.

[59]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[60]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[61]  E. Frolova,et al.  Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. , 2016, Virology.

[62]  OpenStaxCollege Regulation of Stress , 2014 .

[63]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.