Sensitivity Conjecture and Log-Rank Conjecture for Functions with Small Alternating Numbers

The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for $f(x \wedge y)$ and $f(x\oplus y)$ with monotone functions $f$, where $\wedge$ and $\oplus$ are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions $f$ which alternate values for a relatively small number of times on any monotone path from $0^n$ to $1^n$. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers.

[1]  Shao Chin Sung,et al.  Limiting Negations in Bounded-Depth Circuits: An Extension of Markov's Theorem , 2003, ISAAC.

[2]  T. S. Jayram,et al.  A Composition Theorem for Conical Juntas , 2015, Electron. Colloquium Comput. Complex..

[3]  Tal Malkin,et al.  The Power of Negations in Cryptography , 2015, TCC.

[4]  Miklos Santha,et al.  Limiting Negations in Constant Depth Circuits , 1993, SIAM J. Comput..

[5]  Michael E. Saks,et al.  Lattices, mobius functions and communications complexity , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[6]  Andris Ambainis,et al.  Communication complexity in a 3-computer model , 1996, Algorithmica.

[7]  Rocco A. Servedio,et al.  Smooth Boolean Functions are Easy: Efficient Algorithms for Low-Sensitivity Functions , 2015, ITCS.

[8]  Sourav Chakraborty On the sensitivity of cyclically-invariant Boolean functions , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[9]  Michael E. Saks,et al.  Lower Bounds on the Randomized Communication Complexity of Read-Once Functions , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[10]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[11]  Andris Ambainis,et al.  Size of Sets with Small Sensitivity: A Generalization of Simon's Lemma , 2014, TAMC.

[12]  Penghui Yao Parity Decision Tree Complexity and 4-Party Communication Complexity of XOR-functions Are Polynomially Equivalent , 2016, Chic. J. Theor. Comput. Sci..

[13]  Michael E. Saks,et al.  Communication Complexity and Combinatorial Lattice Theory , 1993, J. Comput. Syst. Sci..

[14]  Avishay Tal,et al.  Degree and Sensitivity: tails of two distributions , 2016, Electron. Colloquium Comput. Complex..

[15]  Hans Ulrich Simon A Tight Omega(log log n)-Bound on the Time for Parallel RAM's to Compute Nondegenerated Boolean Functions , 1982, Inf. Control..

[16]  Noam Nisan,et al.  CREW PRAMS and decision trees , 1989, STOC '89.

[17]  Zhiqiang Zhang,et al.  Communication complexities of symmetric XOR functions , 2009, Quantum Inf. Comput..

[18]  Hiroki Morizumi Limiting Negations in Formulas , 2009, ICALP.

[19]  Toniann Pitassi,et al.  Deterministic Communication vs. Partition Number , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[20]  Shachar Lovett,et al.  Communication is bounded by root of rank , 2013, STOC.

[21]  Prasad Raghavendra,et al.  On the Communication Complexity of Read-Once AC^0 Formulae , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[22]  Andris Ambainis,et al.  Tighter Relations between Sensitivity and Other Complexity Measures , 2014, ICALP.

[23]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[24]  Yang Li,et al.  Tight Bounds on Communication Complexity of Symmetric XOR Functions in One-Way and SMP Models , 2011, TAMC.

[25]  Shengyu Zhang,et al.  Quantum strategic game theory , 2010, ITCS '12.

[26]  Kurt Mehlhorn,et al.  Las Vegas is better than determinism in VLSI and distributed computing (Extended Abstract) , 1982, STOC '82.

[27]  David Rubinstein Sensitivity vs. block sensitivity of Boolean functions , 1995, Comb..

[28]  György Turán,et al.  The Critical Complexity of Graph Properties , 1984, Information Processing Letters.

[29]  Hing Yin Tsang On Boolean functions with low sensitivity , 2014 .

[30]  A. A. Markov On the Inversion Complexity of a System of Functions , 1958, JACM.

[31]  Toniann Pitassi,et al.  The story of set disjointness , 2010, SIGA.

[32]  Satyanarayana V. Lokam,et al.  On the Sensitivity Conjecture for Read-k Formulas , 2016, MFCS.

[33]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[34]  Paul Valiant The Log-Rank Conjecture and low degree polynomials , 2004, Inf. Process. Lett..

[35]  Hartmut Klauck,et al.  Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas , 2010, COCOON.

[36]  Ronald de Wolf,et al.  Quantum Communication Cannot Simulate a Public Coin , 2004, ArXiv.

[37]  Ashley Montanaro,et al.  On the communication complexity of XOR functions , 2009, ArXiv.

[38]  S. KarthikC.,et al.  On the Sensitivity Conjecture for Disjunctive Normal Forms , 2016, FSTTCS.

[39]  Shengyu Zhang,et al.  Fourier Sparsity, Spectral Norm, and the Log-Rank Conjecture , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[40]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[41]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[42]  Michael E. Saks,et al.  A New Approach to the Sensitivity Conjecture , 2015, ITCS.

[43]  Yang Liu,et al.  Quantum and randomized communication complexity of XOR functions in the SMP model , 2013, Electron. Colloquium Comput. Complex..

[44]  Alexander A. Sherstov Communication Complexity Theory: Thirty-Five Years of Set Disjointness , 2014, MFCS.

[45]  Xiaoming Sun,et al.  Randomized Communication Complexity for Linear Algebra Problems over Finite Fields , 2012, STACS.

[46]  Andris Ambainis,et al.  Sensitivity Versus Certificate Complexity of Boolean Functions , 2016, CSR.

[47]  Ilan Newman,et al.  Public vs. private coin flips in one round communication games (extended abstract) , 1996, STOC '96.

[48]  Shengyu Zhang Efficient quantum protocols for XOR functions , 2014, SODA.

[49]  Andrew Chi-Chih Yao,et al.  On the power of quantum fingerprinting , 2003, STOC '03.

[50]  Shalev Ben-David Low-Sensitivity Functions from Unambiguous Certificates , 2017, ITCS.

[51]  Qian Li,et al.  A Tighter Relation between Sensitivity and Certificate Complexity , 2016, ArXiv.

[52]  Pooya Hatami,et al.  Variations on the Sensitivity Conjecture , 2011, Theory Comput..

[53]  Andris Ambainis,et al.  New separation between s(f) and bs(f) , 2011, Electron. Colloquium Comput. Complex..

[54]  Rocco A. Servedio,et al.  Learning circuits with few negations , 2014, Electron. Colloquium Comput. Complex..

[55]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[56]  Shengyu Zhang,et al.  The communication complexity of the Hamming distance problem , 2006, Inf. Process. Lett..

[57]  Shachar Lovett,et al.  En Route to the Log-Rank Conjecture: New Reductions and Equivalent Formulations , 2014, ICALP.

[58]  Hiroki Morizumi Limiting negations in non-deterministic circuits , 2009, Theor. Comput. Sci..

[59]  Miklos Santha,et al.  Query Complexity of Matroids , 2013, CIAC.

[60]  Troy Lee,et al.  Composition Theorems in Communication Complexity , 2010, ICALP.

[61]  Li-Yang Tan,et al.  A Composition Theorem for Parity Kill Number , 2014, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[62]  Andris Ambainis,et al.  The Quantum Communication Complexity of Sampling , 2003, SIAM J. Comput..

[63]  Hiroki Morizumi Sensitivity, Block Sensitivity, and Certificate Complexity of Unate Functions and Read-Once Functions , 2014, IFIP TCS.

[64]  A. Razborov Communication Complexity , 2011 .

[65]  Noam Nisan,et al.  On rank vs. communication complexity , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[66]  Hans Ulrich Simon A Tight Omega(loglog n)-Bound on the Time for Parallel Ram's to Compute Nondegenerated Boolean Functions , 1983, FCT.

[67]  László Babai,et al.  Randomized simultaneous messages: solution of a problem of Yao in communication complexity , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.