Swapping Face Images with Generative Neural Networks for Deepfake Technology - Experimental Study

[1]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[2]  LinLin Shen,et al.  Deep Feature Consistent Variational Autoencoder , 2016, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[3]  Stephen Odaibo,et al.  Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function , 2019, ArXiv.

[4]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[5]  Joon Son Chung,et al.  VoxCeleb2: Deep Speaker Recognition , 2018, INTERSPEECH.

[6]  Daiheng Gao,et al.  DeepFaceLab: A simple, flexible and extensible face swapping framework , 2020, ArXiv.

[7]  Arash Vahdat,et al.  Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks , 2017, NIPS.

[8]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[9]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[10]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[11]  Jonas Adler,et al.  Kernel of CycleGAN as a Principle homogeneous space , 2020, ArXiv.

[12]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[13]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[14]  Philip Bachman,et al.  Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data , 2018, ICML.

[15]  Minjae Kim,et al.  U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation , 2019, ICLR.