Variance Reduction in Gibbs Sampler Using Quasi Random Numbers
暂无分享,去创建一个
[1] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[2] I. M. Sobol. Pseudo-random numbers for constructing discrete Markov chains by the Monte Carlo method☆ , 1974 .
[3] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[4] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[5] S. E. Hills,et al. Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .
[6] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[7] P. Odell,et al. A Numerical Procedure to Generate a Sample Covariance Matrix , 1966 .
[8] Andrew L. Rukhin,et al. Tools for statistical inference , 1991 .
[9] R. Cheng,et al. The Generation of Gamma Variables with Non‐Integral Shape Parameter , 1977 .
[10] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[11] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[12] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[13] K. Fang,et al. Number-theoretic methods in statistics , 1993 .
[14] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[15] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[16] J. Besag,et al. Spatial Statistics and Bayesian Computation , 1993 .
[17] J. Kiefer. On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm. , 1961 .
[18] K. Chung,et al. An estimate concerning the Kolmogoroff limit distribution , 1949 .