Detecting Unknots via Equational Reasoning, I: Exploration

We explore the application of automated reasoning techniques to unknot detection, a classical problem of computational topology. We adopt a two-pronged experimental approach, using a theorem prover to try to establish a positive result (i.e. that a knot is the unknot), whilst simultaneously using a model finder to try to establish a negative result (i.e. that the knot is not the unknot). The theorem proving approach utilises equational reasoning, whilst the model finder searches for a minimal size counter-model. We present and compare experimental data using the involutary quandle of the knot, as well as comparing with alternative approaches, highlighting instances of interest. Furthermore, we present theoretical connections of the minimal countermodels obtained with existing knot invariants, for all prime knots of up to 10 crossings: this may be useful for developing advanced search strategies.

[1]  D. Rolfsen Knots and Links , 2003 .

[2]  John Hempel,et al.  RESIDUAL FINITENESS FOR 3-MANIFOLDS , 1987 .

[3]  Zhiwei Wu,et al.  Computable Invariants for Quandles , 2012 .

[4]  Jean Goubault-Larrecq,et al.  Proof Theory and Automated Deduction , 1997 .

[5]  W. Haken Theorie der Normalflächen , 1961 .

[6]  Alexander Leitsch,et al.  Automated Model Building , 2010 .

[7]  Ivan Dynnikov,et al.  Recognition algorithms in knot theory , 2003 .

[8]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[9]  David Joyce,et al.  A classifying invariant of knots, the knot quandle , 1982 .

[10]  Greg Kuperberg,et al.  Knottedness is in NP, modulo GRH , 2011, ArXiv.

[11]  Steven D. Wallace,et al.  Homomorphic images of link quandles , 2004 .

[12]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[13]  J. Carter,et al.  A SURVEY OF QUANDLE IDEAS , 2010, 1002.4429.

[14]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[15]  Roger Fenn,et al.  RACKS AND LINKS IN CODIMENSION TWO , 1992 .

[16]  Robert W. McGrail,et al.  Toward an Online Knowledgebase for Knots and Quandles , 2008 .

[17]  Benjamin A. Burton,et al.  A fast branching algorithm for unknot recognition with experimental polynomial-time behaviour , 2012, ArXiv.

[18]  K. Reidemeister Elementare Begründung der Knotentheorie , 1927 .

[19]  Иван Алексеевич Дынников,et al.  Алгоритмы распознавания в теории узлов@@@Recognition algorithms in knot theory , 2003 .